Pytorch Geometric(PyG)入门

PyG (PyTorch Geometric) 是建立在 PyTorch 基础上的一个库,用于轻松编写和训练图形神经网络 (GNN),适用于与结构化数据相关的各种应用。官方文档

Install PyG

PyG适用于python3.8-3.12

一般使用场景:pip install torch_geometricconda install pyg -c pyg

Get Started

PyG 具有以下主要功能:

  • Data Handling of Graphs
  • Common Benchmark Datasets
  • Mini-batches
  • Data Transforms
  • Learning Methods on Graphs
  • Exercises

Data Handling of Graphs

PyG 中的单个图由 torch_geometric.data.Data 的一个实例描述,默认情况下该实例拥有以下属性:

  • data.x: Node feature matrix with shape [num_nodes, num_node_features]
  • data.edge_index: Graph connectivity in COO format with shape [2, num_edges] and type torch.long
  • data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
  • data.y: Target to train against (may have arbitrary shape), e.g., node-level targets of shape [num_nodes, *] or graph-level targets of shape [1, *]
  • data.pos: Node position matrix with shape [num_nodes, num_dimensions]

Colab Notebooks and Video Tutorials

官方文档
Pytroch Geometric Tutorials

Tutorials 1

理解一个节点出发的计算图,理解多次计算图后可能节点信息就包含整个图数据信息了,反而没有用。
对应whl地址

安装torch版本对应的pyg,如下所示:

python 复制代码
import os
import torch
os.environ['TORCH'] = torch.__version__
print(torch.__version__)

!pip install -q torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q git+https://github.com/pyg-team/pytorch_geometric.git

可视化网络的函数实现

python 复制代码
# 可视化函数
%matplotlib inline
import torch
import networkx as nx
import matplotlib.pyplot as plt

# visualization function for NX graph or Pytorch tensor
def visualize(h, color, epoch=None, loss=None):
  plt.figure(figsize=(7,7))
  plt.xticks([])
  plt.yticks([])
  if torch.is_tensor(h):
    # 可视化神经网络运行中间结果
    h = h.detach().cpu().numpy()
    plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")
    if epoch is not None and loss is not None:
      plt.xlabel(f'Epoch:{epoch}, Loss:{loss.item():.4f}', fontsize=16)
  else:
    nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False, node_color=color, cmap="Set2")
  plt.show()

例如:

python 复制代码
from torch_geometric.utils import to_networkx

G = to_networkx(data, to_undirected=True)
visualize(G, color=data.y)

如图所示:

参考:

PyTorch Geometric (PyG) 入门教程

相关推荐
后端小肥肠14 小时前
公众号卡在 vs 漫画赛道?Coze 一键出稿:输入标题就生成,小白也能冲 10w+
人工智能·aigc·coze
微盛AI企微管家14 小时前
企业微信AI功能升级:选对企业微信服务商协助四大AI场景落地
大数据·人工智能·企业微信
eqwaak015 小时前
科技信息差(9.10)
网络·人工智能·分布式·ar·智能硬件
虫无涯15 小时前
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
人工智能
mortimer15 小时前
精通BAT脚本:为你的Windows AI项目打造“一键启动”的完美体验
人工智能
Baihai_IDP15 小时前
MCP 是为开发者设计的工具,而非为 LLM 而设
人工智能·面试·llm
胡乱编胡乱赢15 小时前
在pycharm终端安装torch
ide·深度学习·pycharm·安装torch
IT_陈寒15 小时前
SpringBoot性能翻倍的7个隐藏配置,90%开发者从不知道!
前端·人工智能·后端
深耕AI15 小时前
PyTorch自定义模型结构详解:从基础到高级实践
人工智能·pytorch·python
Twilight-pending15 小时前
计算机系统性能、架构设计、调度策略论文分类体系参考
人工智能·云原生·分类·数据挖掘