Pytorch Geometric(PyG)入门

PyG (PyTorch Geometric) 是建立在 PyTorch 基础上的一个库,用于轻松编写和训练图形神经网络 (GNN),适用于与结构化数据相关的各种应用。官方文档

Install PyG

PyG适用于python3.8-3.12

一般使用场景:pip install torch_geometricconda install pyg -c pyg

Get Started

PyG 具有以下主要功能:

  • Data Handling of Graphs
  • Common Benchmark Datasets
  • Mini-batches
  • Data Transforms
  • Learning Methods on Graphs
  • Exercises

Data Handling of Graphs

PyG 中的单个图由 torch_geometric.data.Data 的一个实例描述,默认情况下该实例拥有以下属性:

  • data.x: Node feature matrix with shape [num_nodes, num_node_features]
  • data.edge_index: Graph connectivity in COO format with shape [2, num_edges] and type torch.long
  • data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
  • data.y: Target to train against (may have arbitrary shape), e.g., node-level targets of shape [num_nodes, *] or graph-level targets of shape [1, *]
  • data.pos: Node position matrix with shape [num_nodes, num_dimensions]

Colab Notebooks and Video Tutorials

官方文档
Pytroch Geometric Tutorials

Tutorials 1

理解一个节点出发的计算图,理解多次计算图后可能节点信息就包含整个图数据信息了,反而没有用。
对应whl地址

安装torch版本对应的pyg,如下所示:

python 复制代码
import os
import torch
os.environ['TORCH'] = torch.__version__
print(torch.__version__)

!pip install -q torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.html
!pip install -q git+https://github.com/pyg-team/pytorch_geometric.git

可视化网络的函数实现

python 复制代码
# 可视化函数
%matplotlib inline
import torch
import networkx as nx
import matplotlib.pyplot as plt

# visualization function for NX graph or Pytorch tensor
def visualize(h, color, epoch=None, loss=None):
  plt.figure(figsize=(7,7))
  plt.xticks([])
  plt.yticks([])
  if torch.is_tensor(h):
    # 可视化神经网络运行中间结果
    h = h.detach().cpu().numpy()
    plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")
    if epoch is not None and loss is not None:
      plt.xlabel(f'Epoch:{epoch}, Loss:{loss.item():.4f}', fontsize=16)
  else:
    nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False, node_color=color, cmap="Set2")
  plt.show()

例如:

python 复制代码
from torch_geometric.utils import to_networkx

G = to_networkx(data, to_undirected=True)
visualize(G, color=data.y)

如图所示:

参考:

PyTorch Geometric (PyG) 入门教程

相关推荐
初学小刘1 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛1 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_2 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
2301_821919923 小时前
深度学习(四)
pytorch·深度学习
从孑开始3 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI3 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生3 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
WWZZ20253 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
孤狼灬笑4 小时前
深度学习经典分类(算法分析与案例)
rnn·深度学习·算法·cnn·生成模型·fnn
AKAMAI4 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算