pytorch-模型训练

目录

  • [1. 模型训练的基本步骤](#1. 模型训练的基本步骤)
    • [1.1 train、test数据下载](#1.1 train、test数据下载)
    • [1.2 train、test数据加载](#1.2 train、test数据加载)
    • [1.3 Lenet5实例化、初始化loss函数、初始化优化器](#1.3 Lenet5实例化、初始化loss函数、初始化优化器)
    • [1.4 开始train和test](#1.4 开始train和test)
  • [2. 完整代码](#2. 完整代码)

1. 模型训练的基本步骤

以cifar10和Lenet5为例

1.1 train、test数据下载

使用torchvision中的datasets可以方便下载cifar10数据

python 复制代码
cifar_train = datasets.CIFAR10('cifa', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)

transforms.Resize((32, 32)) 将数据图形数据resize为32x32,这里可不用因为cifar10本身就是32x32

transforms.ToTensor()是将numpy或者numpy数组或PIL图像)转换为PyTorch的Tensor格式,以便输入网络。

transforms.Normalize()根据指定的均值和标准差对每个颜色通道进行图像归一化,可以提高神经网络训练过程中的收敛速度

1.2 train、test数据加载

使用pytorch torch.utils.data中的DataLoader用来加载数据

python 复制代码
cifar_train = DataLoader(cifar_train, batch_size=batchz, shuffle=True)

batch_size=batchz: 这里batchz是一个变量,代表每个批次的样本数量。

shuffle=True: 这个参数设定为True意味着在每次训练循环(epoch)开始前,数据集中的样本会被随机打乱顺序。这样做可以增加训练过程中的随机性,帮助模型更好地泛化,避免过拟合特定的样本排列顺序。

1.3 Lenet5实例化、初始化loss函数、初始化优化器

python 复制代码
    device = torch.device('cuda')
    model = Lenet5().to(device)
    crition = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

注意:网络和模型一定要搬到GPU上

1.4 开始train和test

  • 循环epoch
  • 加载train数据、输入模型、计算loss、backward、调用优化器
  • 加载test数据、输入模型、计算prediction、计算正确率
  • 输出正确率
python 复制代码
 for epoch in range(1000):
        model.train()
        for batch, (x, label) in enumerate(cifar_train):
            x, label = x.to(device), label.to(device)
            logits = model(x)
            loss = crition(logits, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # test
        model.eval()
        with torch.no_grad():
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                x, label = x.to(device), label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
            acc = total_correct / total_num
            print(epoch, 'test acc:', acc)

2. 完整代码

python 复制代码
import torch
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import transforms
from torch import nn, optim
import sys

sys.path.append('.')
from Lenet5 import Lenet5


def main():
    batchz = 128
    cifar_train = datasets.CIFAR10('cifa', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_train = DataLoader(cifar_train, batch_size=batchz, shuffle=True)

    cifar_test = datasets.CIFAR10('cifa', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchz, shuffle=True)

    device = torch.device('cuda')
    model = Lenet5().to(device)
    crition = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    for epoch in range(1000):
        model.train()
        for batch, (x, label) in enumerate(cifar_train):
            x, label = x.to(device), label.to(device)
            logits = model(x)
            loss = crition(logits, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # test
        model.eval()
        with torch.no_grad():
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                x, label = x.to(device), label.to(device)
                logits = model(x)
                pred = logits.argmax(dim=1)
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
            acc = total_correct / total_num
            print(epoch, 'test acc:', acc)


if __name__ == '__main__':
    main()

model.train()和model.eval()的区别和作用

model.train()

作用:当调用模型的model.train()方法时,模型会进入训练模式。这意味着:

启用 Dropout层和BatchNorm层:在训练模式下,Dropout层会按照设定的概率随机"丢弃"一部分神经元以防止过拟合,而Batch Normalization(批规范化)层会根据当前批次的数据动态计算均值和方差进行归一化。

梯度计算:允许梯度计算,这是反向传播和权重更新的基础。

应用场景:在模型的训练循环中,每次迭代开始之前调用,以确保模型处于正确的训练状态。

model.eval()

作用:调用model.eval()方法后,模型会进入评估模式。此时:

禁用 Dropout层:Dropout层在评估时不发挥作用,所有的神经元都会被保留,以确保预测的确定性和可重复性。

固定 BatchNorm层:BatchNorm层使用训练过程中积累的统计量(全局均值和方差)进行归一化,而不是当前批次的统计量,这有助于模型输出更加稳定和一致。

应用场景:在验证或测试模型性能时使用,确保模型输出是确定性的,不受训练时特有的随机操作影响,以便于准确评估模型的泛化能力。

相关推荐
鸡鸭扣19 分钟前
Docker:3、在VSCode上安装并运行python程序或JavaScript程序
运维·vscode·python·docker·容器·js
调皮的芋头20 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
paterWang1 小时前
基于 Python 和 OpenCV 的酒店客房入侵检测系统设计与实现
开发语言·python·opencv
东方佑1 小时前
使用Python和OpenCV实现图像像素压缩与解压
开发语言·python·opencv
神秘_博士2 小时前
自制AirTag,支持安卓/鸿蒙/PC/Home Assistant,无需拥有iPhone
arm开发·python·物联网·flutter·docker·gitee
flying robot2 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_3 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型