【脚本工具库】批量下采样图像(附源码)

在图像处理领域,我们经常需要对大批量图像进行下采样操作,以便减小图像的尺寸和文件大小,这对于节省存储空间和提高处理速度非常有帮助。手动操作不仅耗时,而且容易出错。为了解决这个问题,我们可以编写一个Python脚本,使用PIL库来自动化这个过程。本文将详细介绍如何编写一个批量下采样图像的脚本。

准备工作

在开始之前,请确保你的系统上已经安装了Python环境,并且安装了PIL(Python Imaging Library)库。可以使用以下命令安装PIL库:

bash 复制代码
pip install pillow
脚本源码

以下是完整的Python脚本源码,该脚本可以将指定文件夹中的图像按比例下采样,并保存到目标文件夹中。

python 复制代码
from PIL import Image
import os

# 下采样比例设置
scale = 1.0 / 8  # 下采样的倍数
source_path = r"E:\label2"  # 源图像文件夹路径
result_path = r"E:\label3"  # 结果图像文件夹路径

# 确保结果文件夹存在
if not os.path.exists(result_path):
    os.makedirs(result_path)

# 获取源文件夹中的所有图像文件,并按文件名排序
files = os.listdir(source_path)
files.sort(key=lambda x: int(x.split('.')[0]), reverse=False)

cnt = 1  # 用于结果文件命名的计数器

# 批量下采样并保存图像
for file in files:
    img = Image.open(os.path.join(source_path, file))
    if img.mode == "P":
        img = img.convert('RGB')
    width = int(img.size[0] * scale)
    height = int(img.size[1] * scale)
    img_resize = img.resize((width, height), Image.LANCZOS)
    img_resize.save(os.path.join(result_path, "%05d.png" % cnt))
    cnt += 1

print("批量下采样完成!")
使用说明
  1. 修改source_path为源图像文件夹的路径,result_path为目标文件夹的路径。
  2. 设置下采样比例scale,例如1.0 / 8表示将图像尺寸缩小至原来的1/8。
  3. 运行脚本,程序会将源文件夹中的所有图像按比例下采样,并按顺序保存到目标文件夹中。
  4. 每个下采样后的图像文件命名格式为00001.png, 00002.png,依次类推。
总结

这个脚本可以帮助你轻松地批量下采样图像,节省了大量的时间和精力。希望这个教程对你有所帮助。如果你有任何问题或建议,欢迎在评论区留言讨论。

感谢阅读!

相关推荐
字节跳动视频云技术团队几秒前
火山引擎多媒体实验室AIGC视频画质理解大模型VQ-Insight入选AAAI 2025 Oral
人工智能
CodeLongBear3 分钟前
Python数据分析: 数据可视化入门:Matplotlib基础操作与多坐标系实战
python·信息可视化·数据分析
谢景行^顾6 分钟前
初识机器学习
人工智能
AI工具学习测评8 分钟前
实测五款AI生成PPT工具,这款国产软件让我工作效率翻倍!
人工智能·powerpoint
Akamai中国11 分钟前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算·云服务
桂花饼19 分钟前
深度解析 Gemini 3 Pro Image (Nano Banana 2):Google 最强图像模型的核心能力与 API 对接指南
人工智能·aigc·ai绘图·nano banana 2·图像生成api·openai兼容接口·gemini 3 pro
阿里云大数据AI技术25 分钟前
朝阳永续基于阿里云 Milvus 构建金融智能投研产品“AI 小二”
数据库·人工智能
李晨卓34 分钟前
python学习之不同储存方式的操作方法
python·代码规范
中杯可乐多加冰34 分钟前
基于 DeepSeek + MateChat 的证券智能投顾技术实践:打造金融领域的专属大Q模型助手
前端·人工智能
站大爷IP37 分钟前
实战:爬取某联招聘职位需求并生成词云——从零开始的完整指南
python