【脚本工具库】批量下采样图像(附源码)

在图像处理领域,我们经常需要对大批量图像进行下采样操作,以便减小图像的尺寸和文件大小,这对于节省存储空间和提高处理速度非常有帮助。手动操作不仅耗时,而且容易出错。为了解决这个问题,我们可以编写一个Python脚本,使用PIL库来自动化这个过程。本文将详细介绍如何编写一个批量下采样图像的脚本。

准备工作

在开始之前,请确保你的系统上已经安装了Python环境,并且安装了PIL(Python Imaging Library)库。可以使用以下命令安装PIL库:

bash 复制代码
pip install pillow
脚本源码

以下是完整的Python脚本源码,该脚本可以将指定文件夹中的图像按比例下采样,并保存到目标文件夹中。

python 复制代码
from PIL import Image
import os

# 下采样比例设置
scale = 1.0 / 8  # 下采样的倍数
source_path = r"E:\label2"  # 源图像文件夹路径
result_path = r"E:\label3"  # 结果图像文件夹路径

# 确保结果文件夹存在
if not os.path.exists(result_path):
    os.makedirs(result_path)

# 获取源文件夹中的所有图像文件,并按文件名排序
files = os.listdir(source_path)
files.sort(key=lambda x: int(x.split('.')[0]), reverse=False)

cnt = 1  # 用于结果文件命名的计数器

# 批量下采样并保存图像
for file in files:
    img = Image.open(os.path.join(source_path, file))
    if img.mode == "P":
        img = img.convert('RGB')
    width = int(img.size[0] * scale)
    height = int(img.size[1] * scale)
    img_resize = img.resize((width, height), Image.LANCZOS)
    img_resize.save(os.path.join(result_path, "%05d.png" % cnt))
    cnt += 1

print("批量下采样完成!")
使用说明
  1. 修改source_path为源图像文件夹的路径,result_path为目标文件夹的路径。
  2. 设置下采样比例scale,例如1.0 / 8表示将图像尺寸缩小至原来的1/8。
  3. 运行脚本,程序会将源文件夹中的所有图像按比例下采样,并按顺序保存到目标文件夹中。
  4. 每个下采样后的图像文件命名格式为00001.png, 00002.png,依次类推。
总结

这个脚本可以帮助你轻松地批量下采样图像,节省了大量的时间和精力。希望这个教程对你有所帮助。如果你有任何问题或建议,欢迎在评论区留言讨论。

感谢阅读!

相关推荐
双向334 分钟前
私有化部署全攻略:开源模型本地化改造的性能与安全评测
人工智能
189228048615 分钟前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
AI波克布林6 分钟前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
张子夜 iiii6 分钟前
机器学习算法系列专栏:主成分分析(PCA)降维算法(初学者)
人工智能·python·算法·机器学习
GIS宇宙9 分钟前
五分钟免费开启你的Vibe Coding之旅!
人工智能
用户51914958484510 分钟前
Three.js实例化技术:高效渲染数千3D对象
人工智能·aigc
weixin_4569042712 分钟前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
ciku24 分钟前
Spring AI Starter和文档解读
java·人工智能·spring
Blossom.11833 分钟前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
小贤编程手记1 小时前
毛绒变装、吉卜力风...快手AI视频可灵为什么好用?
人工智能·数码产品