大语言模型系列-Transformer

Transformer是一种基于自注意力机制的大型神经网络模型,由Vaswani等人在2017年提出。它在机器翻译任务上表现出色,成为了自然语言处理领域的重要模型之一。

传统的语言模型主要依赖于循环神经网络(RNN)结构来处理序列数据。然而,RNN在处理长序列时容易出现梯度消失和梯度爆炸的问题,而且无法并行计算,限制了模型的训练速度和准确度。

Transformer采用了自注意力机制(Self-Attention)来解决这些问题。自注意力机制可以同时计算输入序列中不同位置之间的关联性,并将这些关联性作为权重来加权求和,从而得到每个位置的表示。这种机制使得模型能够跨越长距离的依赖关系,并且可以并行计算,大大提高了模型的训练效率和准确度。

Transformer模型由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入序列映射到一系列高维向量表示,解码器则利用这些向量表示来生成输出序列。编码器和解码器都由多层自注意力层和前馈神经网络层组成。在训练过程中,模型通过最大化目标序列的概率来学习参数,使用了注意力机制和残差连接来优化模型的训练。

Transformer模型在很多自然语言处理任务上取得了显著的性能提升,包括机器翻译、语言生成、文本分类等。由于Transformer模型的强大性能和高效训练,它已成为自然语言处理领域的重要工具,也为其他领域的模型设计提供了启示。

相关推荐
余生H19 分钟前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
果冻人工智能38 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工39 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz41 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学1 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类