大语言模型系列-Transformer

Transformer是一种基于自注意力机制的大型神经网络模型,由Vaswani等人在2017年提出。它在机器翻译任务上表现出色,成为了自然语言处理领域的重要模型之一。

传统的语言模型主要依赖于循环神经网络(RNN)结构来处理序列数据。然而,RNN在处理长序列时容易出现梯度消失和梯度爆炸的问题,而且无法并行计算,限制了模型的训练速度和准确度。

Transformer采用了自注意力机制(Self-Attention)来解决这些问题。自注意力机制可以同时计算输入序列中不同位置之间的关联性,并将这些关联性作为权重来加权求和,从而得到每个位置的表示。这种机制使得模型能够跨越长距离的依赖关系,并且可以并行计算,大大提高了模型的训练效率和准确度。

Transformer模型由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入序列映射到一系列高维向量表示,解码器则利用这些向量表示来生成输出序列。编码器和解码器都由多层自注意力层和前馈神经网络层组成。在训练过程中,模型通过最大化目标序列的概率来学习参数,使用了注意力机制和残差连接来优化模型的训练。

Transformer模型在很多自然语言处理任务上取得了显著的性能提升,包括机器翻译、语言生成、文本分类等。由于Transformer模型的强大性能和高效训练,它已成为自然语言处理领域的重要工具,也为其他领域的模型设计提供了启示。

相关推荐
IT_陈寒2 小时前
JavaScript 性能优化:5 个被低估的 V8 引擎技巧让你的代码快 200%
前端·人工智能·后端
Juchecar2 小时前
一文讲清 PyTorch 中反向传播(Backpropagation)的实现原理
人工智能
黎燃2 小时前
游戏NPC的智能行为设计:从规则驱动到强化学习的演进
人工智能
机器之心3 小时前
高阶程序,让AI从技术可行到商业可信的最后一公里
人工智能·openai
martinzh3 小时前
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
人工智能
机器之心3 小时前
刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
人工智能·openai
scilwb3 小时前
Isaac Sim机械臂教程 - 阶段1:基础环境搭建与机械臂加载
人工智能·开源
舒一笑3 小时前
TorchV企业级AI知识引擎的三大功能支柱:从构建到运营的技术解析
人工智能
掘金酱3 小时前
🎉 2025年8月金石计划开奖公示
前端·人工智能·后端
鹏多多4 小时前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能