大语言模型系列-Transformer

Transformer是一种基于自注意力机制的大型神经网络模型,由Vaswani等人在2017年提出。它在机器翻译任务上表现出色,成为了自然语言处理领域的重要模型之一。

传统的语言模型主要依赖于循环神经网络(RNN)结构来处理序列数据。然而,RNN在处理长序列时容易出现梯度消失和梯度爆炸的问题,而且无法并行计算,限制了模型的训练速度和准确度。

Transformer采用了自注意力机制(Self-Attention)来解决这些问题。自注意力机制可以同时计算输入序列中不同位置之间的关联性,并将这些关联性作为权重来加权求和,从而得到每个位置的表示。这种机制使得模型能够跨越长距离的依赖关系,并且可以并行计算,大大提高了模型的训练效率和准确度。

Transformer模型由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入序列映射到一系列高维向量表示,解码器则利用这些向量表示来生成输出序列。编码器和解码器都由多层自注意力层和前馈神经网络层组成。在训练过程中,模型通过最大化目标序列的概率来学习参数,使用了注意力机制和残差连接来优化模型的训练。

Transformer模型在很多自然语言处理任务上取得了显著的性能提升,包括机器翻译、语言生成、文本分类等。由于Transformer模型的强大性能和高效训练,它已成为自然语言处理领域的重要工具,也为其他领域的模型设计提供了启示。

相关推荐
Python测试之道43 分钟前
Camel AI Owl + 阿里云QWQ 本地部署
人工智能·阿里云·云计算
訾博ZiBo1 小时前
AI日报 - 2025年3月13日
人工智能
音视频牛哥1 小时前
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
人工智能·opencv·计算机视觉
SecPulse1 小时前
AI开源竞赛与硬件革命:2025年3月科技热点全景解读——阿里、腾讯领跑开源,英特尔、台积电重塑算力格局
人工智能·科技·opencv·自然语言处理·开源·语音识别
云端源想1 小时前
浅谈大语言模型(LLM)的微调与部署
人工智能·语言模型·自然语言处理
瑶光守护者2 小时前
并行计算编程模型的发展方向与RISC-V的机遇
人工智能·笔记·学习·架构·risc-v
初心丨哈士奇2 小时前
基于大模型的GitLab CodeReview 技术调研
前端·人工智能·node.js
Luis Li 的猫猫3 小时前
基于MATLAB的冰块变化仿真
开发语言·图像处理·人工智能·算法·matlab
xiatian_win1233 小时前
本地部署 OpenManus 保姆级教程(Windows 版)
人工智能·windows