大语言模型系列-Transformer

Transformer是一种基于自注意力机制的大型神经网络模型,由Vaswani等人在2017年提出。它在机器翻译任务上表现出色,成为了自然语言处理领域的重要模型之一。

传统的语言模型主要依赖于循环神经网络(RNN)结构来处理序列数据。然而,RNN在处理长序列时容易出现梯度消失和梯度爆炸的问题,而且无法并行计算,限制了模型的训练速度和准确度。

Transformer采用了自注意力机制(Self-Attention)来解决这些问题。自注意力机制可以同时计算输入序列中不同位置之间的关联性,并将这些关联性作为权重来加权求和,从而得到每个位置的表示。这种机制使得模型能够跨越长距离的依赖关系,并且可以并行计算,大大提高了模型的训练效率和准确度。

Transformer模型由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入序列映射到一系列高维向量表示,解码器则利用这些向量表示来生成输出序列。编码器和解码器都由多层自注意力层和前馈神经网络层组成。在训练过程中,模型通过最大化目标序列的概率来学习参数,使用了注意力机制和残差连接来优化模型的训练。

Transformer模型在很多自然语言处理任务上取得了显著的性能提升,包括机器翻译、语言生成、文本分类等。由于Transformer模型的强大性能和高效训练,它已成为自然语言处理领域的重要工具,也为其他领域的模型设计提供了启示。

相关推荐
春末的南方城市13 分钟前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
whltaoin26 分钟前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰30 分钟前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥30 分钟前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发
岁月宁静1 小时前
AI 时代,每个程序员都该拥有个人提示词库:从效率工具到战略资产的蜕变
前端·人工智能·ai编程
双向331 小时前
Trae Solo+豆包Version1.6+Seedream4.0打造"AI识菜通"
人工智能
AutoMQ1 小时前
10.17 上海 Google Meetup:从数据出发,解锁 AI 助力增长的新边界
大数据·人工智能
m0_743106461 小时前
LOBE-GS:分块&致密化效率提升
人工智能·算法·计算机视觉·3d·几何学
weixin_446260851 小时前
李宏毅2025秋季机器学习第三讲了解语言模型內部是怎么运作的演示实操2
人工智能
love530love1 小时前
【笔记】 Podman Desktop 中部署 Stable Diffusion WebUI (GPU 支持)
人工智能·windows·笔记·python·容器·stable diffusion·podman