【图像处理】1、使用OpenCV库图像轮廓的检测和绘制

OpenCV (Open Source Computer Vision Library) 是一个用于计算机视觉和图像处理的开源库。它提供了数百种用于图像和视频分析的算法,并被广泛应用于研究和商业领域。OpenCV 支持多种编程语言,包括 C++、Python、Java 等,具有跨平台的特性,可以在 Windows、Linux、macOS 和 Android 等操作系统上运行。

安装OpenCV库

你可以使用以下命令安装OpenCV库:

python 复制代码
pip install opencv-python
python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像并转换为灰度图像
image = cv2.imread('path_to_image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 应用阈值
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 检测轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 在原始图像上绘制轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 3)

# 显示结果
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Contours')
plt.show()

代码说明:

  1. 读取图像 :使用 cv2.imread() 读取图像并转换为灰度图像。请将 'path_to_image.jpg' 替换为你要处理的图像的实际路径。
  2. 应用阈值 :使用 cv2.threshold() 将灰度图像转换为二值图像。
  3. 检测轮廓 :使用 cv2.findContours() 从二值图像中检测轮廓。
  4. 绘制轮廓 :使用 cv2.drawContours() 在原始图像上绘制检测到的轮廓。
  5. 显示结果 :使用 matplotlib.pyplot 显示结果图像。
相关推荐
aiweker2 小时前
Selenium 使用指南:从入门到精通
python·selenium·测试工具
SteveKenny3 小时前
Python 梯度下降法(六):Nadam Optimize
开发语言·python
dreadp5 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
Tester_孙大壮5 小时前
第32章 测试驱动开发(TDD)的原理、实践、关联与争议(Python 版)
驱动开发·python·tdd
小王子10249 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
Mason Lin10 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客10 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
RZer12 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos
CM莫问13 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
查理零世13 小时前
【算法】回溯算法专题① ——子集型回溯 python
python·算法