【python】OpenCV—Aruco

文章目录

  • [Detect Aruco](#Detect Aruco)
  • [Guess Aruco Type](#Guess Aruco Type)

Detect Aruco

学习参考来自:OpenCV基础(19)使用 OpenCV 和 Python 检测 ArUco 标记

更多使用细节可以参考:【python】OpenCV---Color Correction

源码:

链接:https://pan.baidu.com/s/1bEPuiix0MrtL7Fu3paoRug

提取码:123a

python 复制代码
# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_image.py --image images/example_01.png --type DICT_5X5_100
# python detect_aruco_image.py --image images/example_02.png --type DICT_ARUCO_ORIGINAL

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing the ArUCo tag")
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Tpe of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUco tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=600)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary, grab the ArUCo parameters and detect the markers
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()
(corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)

# Verify *at least* one ArUCo marker was detected
if len(corners) > 0:
    # Flatten the ArUCo IDs list
    ids = ids.flatten()
    # Loop over the detected ArUCo corners
    for (markerCorner, markerID) in zip(corners, ids):
        # Extract the markers corners which are always returned in the following order:
        # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
        corners = markerCorner.reshape((4, 2))
        (topLeft, topRight, bottomRight, bottomLeft) = corners
        # Convert each of the (x, y)-coordinate pairs to integers
        topRight = (int(topRight[0]), int(topRight[1]))
        bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
        bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
        topLeft = (int(topLeft[0]), int(topLeft[1]))
        # Draw the bounding box of the ArUCo detection
        cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
        cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
        cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
        cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
        # Compute and draw the center (x, y) coordinates of the ArUCo marker
        cX = int((topLeft[0] + bottomRight[0]) / 2.0)
        cY = int((topLeft[1] + bottomRight[1]) / 2.0)
        cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
        # Draw the ArUco marker ID on the image
        cv2.putText(image, str(markerID), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX,
                    0.5, (0, 255, 0), 2)
        print("[INFO] ArUco marker ID: {}".format(markerID))
        # write the output image
        cv2.imwrite("{}_{}.jpg".format(args["type"], markerID), image)
        # Show the output image
        cv2.imshow("Image", image)
        cv2.waitKey(0)

输入图像

依次输出 DICT_5X5_100_42

DICT_5X5_100_24

DICT_5X5_100_70

DICT_5X5_100_66

DICT_5X5_100_87


再来一组

输入图片

依次输出

DICT_ARUCO_ORIGINAL_241

DICT_ARUCO_ORIGINAL_1007

DICT_ARUCO_ORIGINAL_1001

DICT_ARUCO_ORIGINAL_923

演示了如何检测图片,下面是检测视频的代码

python 复制代码
# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_video.py

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
from imutils.video import VideoStream
import argparse
import imutils
import time
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Type of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Verify that the supplied ArUCo tag exists and is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary and grab the ArUCo parameters
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] Starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

# Loop over the frames from the video stream
while True:
    # Grab the frame from the threaded video stream and resize it to have a maximum width of 600 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=1000)
    # Detect ArUco markers in the input frame
    (corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
    # Verify *at least* one ArUco marker was detected
    if len(corners) > 0:
        # Flatten the ArUco IDs list
        ids = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, ids):
            # Extract the marker corners (which are always returned
            # in top-left, top-right, bottom-right, and bottom-left order)
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(frame, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(frame, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(frame, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(frame, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y)-coordinates of the ArUco marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(frame, (cX, cY), 4, (0, 0, 255), -1)
            # Draw the ArUco marker ID on the frame
            cv2.putText(frame, str(markerID), (topLeft[0], topLeft[1] - 15),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    # Show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
    # If the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

# Do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

Guess Aruco Type

学习参考来自:OpenCV基础(20)使用 OpenCV 和 Python 确定 ArUco 标记类型

源码:

链接:https://pan.baidu.com/s/1DmjKL1tVbQX0YkDUzki2Jw

提取码:123a

python 复制代码
# ------------------------
#   USAGE
# ------------------------
#  python guess_aruco_type.py --image images/example_01.png
#  python guess_aruco_type.py --image images/example_02.png
#  python guess_aruco_type.py --image images/example_03.png
# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 2 markers for 'DICT_5X5_50'
[INFO] Detected 5 markers for 'DICT_5X5_100'
[INFO] Detected 5 markers for 'DICT_5X5_250'
[INFO] Detected 5 markers for 'DICT_5X5_1000'

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 1 markers for 'DICT_4X4_50'
[INFO] Detected 1 markers for 'DICT_4X4_100'
[INFO] Detected 1 markers for 'DICT_4X4_250'
[INFO] Detected 1 markers for 'DICT_4X4_1000'
[INFO] Detected 4 markers for 'DICT_ARUCO_ORIGINAL'

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 5 markers for 'DICT_APRILTAG_36h11'

猜出来了 Aruco 的类型,我们就可以设定检测了

python 复制代码
# ------------------------
#   USAGE
# ------------------------
#  python detect_aruco_image_type.py --image images/example_03.png

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
# if ARUCO_DICT.get(args["type"], None) is None:
#     print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
#     sys.exit(0)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))
        # Flatten the ArUCo IDs list
        IDS = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, IDS):
            # Extract the markers corners which are always returned in the following order:
            # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y) coordinates of the ArUCo marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
            # Get marker type name
            markerType = "{} -> {}".format(markerID, arucoName)
            # Draw the ArUco marker ID on the image
            cv2.putText(image, str(markerType), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 255, 0), 2)
            print("[INFO] ArUco marker ID: {}".format(markerID))

            # Write the output image
            cv2.imwrite(f"{markerID}_{arucoName}.jpg", image)
            # Show the output image
            cv2.imshow("Image", image)
            cv2.waitKey(0)

输入

依次输出

7_DICT_APRILTAG_36h11

3_DICT_APRILTAG_36h11

5_DICT_APRILTAG_36h11

14_DICT_APRILTAG_36h11

8_DICT_APRILTAG_36h11

再看看另外一个的案例

DICT_5X5_100

87_DICT_5X5_250

87_DICT_5X5_1000

相关推荐
k***92161 分钟前
Python 科学计算有哪些提高运算速度的技巧
开发语言·python
superman超哥1 分钟前
仓颉条件变量深度解析与实践:解锁高效并发同步
开发语言·python·c#·仓颉
长空任鸟飞_阿康2 分钟前
LangGraph 技术详解:基于图结构的 AI 工作流与多智能体编排框架
人工智能·python·langchain
道法自然|~41 分钟前
【PHP】简单的脚本/扫描器拦截与重要文件保护
开发语言·爬虫·php
love530love1 小时前
ComfyUI 升级 v0.4.0 踩坑记录:解决 TypeError: QM_Queue.task_done() 报错
人工智能·windows·python·comfyui
GoWjw1 小时前
在C&C++中结构体的惯用方法
c语言·开发语言·c++
静心观复1 小时前
Java 中,`1 << 1`
java·开发语言
Bruce_kaizy1 小时前
c++单调数据结构————单调栈,单调队列
开发语言·数据结构·c++
阿坤带你走近大数据1 小时前
Python基础知识-数据结构篇
开发语言·数据结构·python
froginwe111 小时前
AJAX 实时搜索:技术原理与实现方法
开发语言