【python】OpenCV—Aruco

文章目录

  • [Detect Aruco](#Detect Aruco)
  • [Guess Aruco Type](#Guess Aruco Type)

Detect Aruco

学习参考来自:OpenCV基础(19)使用 OpenCV 和 Python 检测 ArUco 标记

更多使用细节可以参考:【python】OpenCV---Color Correction

源码:

链接:https://pan.baidu.com/s/1bEPuiix0MrtL7Fu3paoRug

提取码:123a

python 复制代码
# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_image.py --image images/example_01.png --type DICT_5X5_100
# python detect_aruco_image.py --image images/example_02.png --type DICT_ARUCO_ORIGINAL

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing the ArUCo tag")
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Tpe of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUco tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=600)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary, grab the ArUCo parameters and detect the markers
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()
(corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)

# Verify *at least* one ArUCo marker was detected
if len(corners) > 0:
    # Flatten the ArUCo IDs list
    ids = ids.flatten()
    # Loop over the detected ArUCo corners
    for (markerCorner, markerID) in zip(corners, ids):
        # Extract the markers corners which are always returned in the following order:
        # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
        corners = markerCorner.reshape((4, 2))
        (topLeft, topRight, bottomRight, bottomLeft) = corners
        # Convert each of the (x, y)-coordinate pairs to integers
        topRight = (int(topRight[0]), int(topRight[1]))
        bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
        bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
        topLeft = (int(topLeft[0]), int(topLeft[1]))
        # Draw the bounding box of the ArUCo detection
        cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
        cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
        cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
        cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
        # Compute and draw the center (x, y) coordinates of the ArUCo marker
        cX = int((topLeft[0] + bottomRight[0]) / 2.0)
        cY = int((topLeft[1] + bottomRight[1]) / 2.0)
        cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
        # Draw the ArUco marker ID on the image
        cv2.putText(image, str(markerID), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX,
                    0.5, (0, 255, 0), 2)
        print("[INFO] ArUco marker ID: {}".format(markerID))
        # write the output image
        cv2.imwrite("{}_{}.jpg".format(args["type"], markerID), image)
        # Show the output image
        cv2.imshow("Image", image)
        cv2.waitKey(0)

输入图像

依次输出 DICT_5X5_100_42

DICT_5X5_100_24

DICT_5X5_100_70

DICT_5X5_100_66

DICT_5X5_100_87


再来一组

输入图片

依次输出

DICT_ARUCO_ORIGINAL_241

DICT_ARUCO_ORIGINAL_1007

DICT_ARUCO_ORIGINAL_1001

DICT_ARUCO_ORIGINAL_923

演示了如何检测图片,下面是检测视频的代码

python 复制代码
# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_video.py

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
from imutils.video import VideoStream
import argparse
import imutils
import time
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Type of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Verify that the supplied ArUCo tag exists and is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary and grab the ArUCo parameters
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] Starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

# Loop over the frames from the video stream
while True:
    # Grab the frame from the threaded video stream and resize it to have a maximum width of 600 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=1000)
    # Detect ArUco markers in the input frame
    (corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
    # Verify *at least* one ArUco marker was detected
    if len(corners) > 0:
        # Flatten the ArUco IDs list
        ids = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, ids):
            # Extract the marker corners (which are always returned
            # in top-left, top-right, bottom-right, and bottom-left order)
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(frame, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(frame, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(frame, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(frame, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y)-coordinates of the ArUco marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(frame, (cX, cY), 4, (0, 0, 255), -1)
            # Draw the ArUco marker ID on the frame
            cv2.putText(frame, str(markerID), (topLeft[0], topLeft[1] - 15),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    # Show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
    # If the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

# Do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

Guess Aruco Type

学习参考来自:OpenCV基础(20)使用 OpenCV 和 Python 确定 ArUco 标记类型

源码:

链接:https://pan.baidu.com/s/1DmjKL1tVbQX0YkDUzki2Jw

提取码:123a

python 复制代码
# ------------------------
#   USAGE
# ------------------------
#  python guess_aruco_type.py --image images/example_01.png
#  python guess_aruco_type.py --image images/example_02.png
#  python guess_aruco_type.py --image images/example_03.png
# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 2 markers for 'DICT_5X5_50'
[INFO] Detected 5 markers for 'DICT_5X5_100'
[INFO] Detected 5 markers for 'DICT_5X5_250'
[INFO] Detected 5 markers for 'DICT_5X5_1000'

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 1 markers for 'DICT_4X4_50'
[INFO] Detected 1 markers for 'DICT_4X4_100'
[INFO] Detected 1 markers for 'DICT_4X4_250'
[INFO] Detected 1 markers for 'DICT_4X4_1000'
[INFO] Detected 4 markers for 'DICT_ARUCO_ORIGINAL'

输入

输出

python 复制代码
[INFO] Loading image...
[INFO] Detected 5 markers for 'DICT_APRILTAG_36h11'

猜出来了 Aruco 的类型,我们就可以设定检测了

python 复制代码
# ------------------------
#   USAGE
# ------------------------
#  python detect_aruco_image_type.py --image images/example_03.png

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
# if ARUCO_DICT.get(args["type"], None) is None:
#     print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
#     sys.exit(0)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))
        # Flatten the ArUCo IDs list
        IDS = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, IDS):
            # Extract the markers corners which are always returned in the following order:
            # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y) coordinates of the ArUCo marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
            # Get marker type name
            markerType = "{} -> {}".format(markerID, arucoName)
            # Draw the ArUco marker ID on the image
            cv2.putText(image, str(markerType), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 255, 0), 2)
            print("[INFO] ArUco marker ID: {}".format(markerID))

            # Write the output image
            cv2.imwrite(f"{markerID}_{arucoName}.jpg", image)
            # Show the output image
            cv2.imshow("Image", image)
            cv2.waitKey(0)

输入

依次输出

7_DICT_APRILTAG_36h11

3_DICT_APRILTAG_36h11

5_DICT_APRILTAG_36h11

14_DICT_APRILTAG_36h11

8_DICT_APRILTAG_36h11

再看看另外一个的案例

DICT_5X5_100

87_DICT_5X5_250

87_DICT_5X5_1000

相关推荐
问道飞鱼10 分钟前
【Rust编程语言】Rust数据类型全面解析
开发语言·后端·rust·数据类型
Blossom.11818 分钟前
多模态大模型LoRA微调实战:从零构建企业级图文检索系统
人工智能·python·深度学习·学习·react.js·django·transformer
小钻风336626 分钟前
软件测试: 从入门到实践 (接口测试)
软件测试·python
会飞的胖达喵39 分钟前
Qt自动信号槽连接机制:深入解析与应用实践
开发语言·qt
无奈笑天下41 分钟前
银河麒麟V10虚拟机安装vmtools报错:/bin/bash解释器错误, 权限不够
linux·运维·服务器·开发语言·经验分享·bash
superman超哥1 小时前
仓颉动态特性探索:反射API的原理、实战与性能权衡
开发语言·后端·仓颉编程语言·仓颉·仓颉语言·仓颉动态特性·反射api
小鸡吃米…1 小时前
带Python的人工智能——计算机视觉
人工智能·python·计算机视觉
程序员阿鹏1 小时前
@Autowired和@Resource的区别
java·开发语言·spring
Halo_tjn1 小时前
Java List集合知识点
java·开发语言·windows·算法·list
superman超哥1 小时前
仓颉元编程之魂:宏系统的设计哲学与深度实践
开发语言·后端·仓颉编程语言·仓颉·仓颉语言·仓颉语言特性