【Python机器学习】自动化特征选择——迭代特征选择

在单变量测试中,没有使用模型;在基于模型的选择中,使用单个模型来选择特征。而在迭代特征选择中,将会构造一系列模型,每个模型都使用不同数量的特征。有两种基本方法:

1、开始时没有特征,然后逐个添加特征,知道满足某个条件终止;

2、从所有特征开始,然后逐个删除特征,知道满足某个条件终止。

由于构造了一系列模型,所以这些方法的计算成本要比单变量统计和基于模型的特征选择要更高。其中一种特殊方法就是递归特征消除,它从所有特征开始构建模型,并根据模型舍弃最不重要的特征,然后使用除被舍弃特征之外的所有特征来构建一个新模型,如此继续,知道仅剩下预设数量的特征。为了让这种方法能够运行,用于选择的模型需要提供某种确定特征重要性的方法,正如基于模型的选择所做的那样。

下面使用一个随机森林模型:

python 复制代码
select = RFE(RandomForestClassifier(n_estimators=100,random_state=42),n_features_to_select=40)
select.fit(X_train,y_train)
mask=select.get_support()

plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel('Sample index')
plt.show()

与单变量选择和基于模型的特征选择相比,迭代特征选择的结果更好,但仍然露掉了一个特征。而且运行代码所需的时间也长得多,因为对一个随机森林模型训练了40次,每运行一次删除一个特征。

下面,测试一下使用RFE做特征选择时Logistic回归模型的精度

python 复制代码
X_train_rfe=select.transform(X_train)
X_test_rfe=select.transform(X_test)
score=LogisticRegression().fit(X_train_rfe,y_train).score(X_test_rfe,y_test)
print(score)

我们还可以利用在RFE内使用的模型来进行预测。这仅使用被选中的特征集:

python 复制代码
print("test score:{}".format(select.score(X_test,y_test)))
相关推荐
亿信华辰软件1 分钟前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
费弗里4 分钟前
一个小技巧轻松提升Dash应用debug效率
python·dash
小小测试开发6 分钟前
Python浮点型常用方法全解析:从基础到实战
python
大模型实验室Lab4AI11 分钟前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
小赵还有头发15 分钟前
安装Ceres与glog
linux·学习·无人机·ceres·glog
旷野说20 分钟前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
ValhallaCoder23 分钟前
Day53-图论
数据结构·python·算法·图论
陈天伟教授38 分钟前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
Engineer邓祥浩41 分钟前
设计模式学习(16) 23-14 命令模式
学习·设计模式·命令模式
爱打代码的小林41 分钟前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉