【Python机器学习】自动化特征选择——迭代特征选择

在单变量测试中,没有使用模型;在基于模型的选择中,使用单个模型来选择特征。而在迭代特征选择中,将会构造一系列模型,每个模型都使用不同数量的特征。有两种基本方法:

1、开始时没有特征,然后逐个添加特征,知道满足某个条件终止;

2、从所有特征开始,然后逐个删除特征,知道满足某个条件终止。

由于构造了一系列模型,所以这些方法的计算成本要比单变量统计和基于模型的特征选择要更高。其中一种特殊方法就是递归特征消除,它从所有特征开始构建模型,并根据模型舍弃最不重要的特征,然后使用除被舍弃特征之外的所有特征来构建一个新模型,如此继续,知道仅剩下预设数量的特征。为了让这种方法能够运行,用于选择的模型需要提供某种确定特征重要性的方法,正如基于模型的选择所做的那样。

下面使用一个随机森林模型:

python 复制代码
select = RFE(RandomForestClassifier(n_estimators=100,random_state=42),n_features_to_select=40)
select.fit(X_train,y_train)
mask=select.get_support()

plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel('Sample index')
plt.show()

与单变量选择和基于模型的特征选择相比,迭代特征选择的结果更好,但仍然露掉了一个特征。而且运行代码所需的时间也长得多,因为对一个随机森林模型训练了40次,每运行一次删除一个特征。

下面,测试一下使用RFE做特征选择时Logistic回归模型的精度

python 复制代码
X_train_rfe=select.transform(X_train)
X_test_rfe=select.transform(X_test)
score=LogisticRegression().fit(X_train_rfe,y_train).score(X_test_rfe,y_test)
print(score)

我们还可以利用在RFE内使用的模型来进行预测。这仅使用被选中的特征集:

python 复制代码
print("test score:{}".format(select.score(X_test,y_test)))
相关推荐
Lum11042 分钟前
AI驱动数据质量优化:破局数据治理难题
人工智能
SoFlu软件机器人3 分钟前
5 分钟用 AI 搭建 ERP 后台
人工智能
呆头鹅AI工作室9 分钟前
[2025CVPR-目标检测方向] CorrBEV:多视图3D物体检测
人工智能·深度学习·神经网络·目标检测·计算机视觉·3d·卷积神经网络
大龄门外汉13 分钟前
CPP学习之list使用及模拟实现
windows·学习·list
泽安AI研习社16 分钟前
Cursor用户集体倒戈 !这14招让你榨干Claude Code【建议收藏】
人工智能·python
WoShop商城源码18 分钟前
短视频矩阵系统哪家好?全面解析与推荐
大数据·人工智能·其他·矩阵
阿星AI工作室19 分钟前
亚马逊AI编程软件Kiro:产品经理赶紧抱紧饭碗!
人工智能
超浪的晨20 分钟前
Java List 集合详解:从基础到实战,掌握 Java 列表操作全貌
java·开发语言·后端·学习·个人开发
自衍体科技24 分钟前
[架构设计] Prompt 的终局:从“指令集”到“意识生态系统”的范式革命
人工智能
超浪的晨25 分钟前
Java Set 集合详解:从基础语法到实战应用,彻底掌握去重与唯一性集合
java·开发语言·后端·学习·个人开发