计算Dice损失的函数

计算Dice损失的函数

python 复制代码
def Dice_loss(inputs, target, beta=1, smooth = 1e-5):
    n,c, h, w = inputs.size()    #
    nt,ht, wt, ct = target.size()  #nt,
    
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
    temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1)
    temp_target = target.view(n, -1, ct)

    #--------------------------------------------#
    #   计算dice loss
    #--------------------------------------------#
    tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])
    fp = torch.sum(temp_inputs                       , axis=[0,1]) - tp
    fn = torch.sum(temp_target[...,:-1]              , axis=[0,1]) - tp

    score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
    dice_loss = 1 - torch.mean(score)
    return dice_loss

这段代码是用于计算二分类问题的混淆矩阵(Confusion Matrix)中的True Positives(TP),False Positives(FP)和False Negatives(FN)。在混淆矩阵中,TP表示模型正确预测为正类的数量,FP表示模型错误地预测为正类的数量,FN表示实际为正类但模型没有预测为正类的数量。

让我们分解这段代码来理解每个部分的作用:

  1. temp_target[..., :-1] * temp_inputs

    • temp_target[..., :-1] 获取 temp_target 张量中除了最后一维之外的所有元素。:-1 是一个切片操作,它表示从开始到倒数第二个元素。
    • temp_inputs 是模型的预测输出。
    • 这两个张量进行元素相乘,只有当 temp_target 的最后一维等于 1 时,才会乘以 temp_inputs 对应的位置的值。这模拟了只有当预测和真实标签都为正类(1)时,才认为是真正的正类检测。
  2. torch.sum(..., axis=[0,1])

    • 这是一个求和操作,计算在指定维度上(这里是第0维和第1维)的总和。
    • axis=[0,1] 表示在第0维和第1维上进行求和。通常,第0维代表批量大小(batch size),第1维代表序列长度(sequence length)。
    • 这样做的效果是将所有正类预测的和(TP)汇总起来,无论它们在批量中的哪个位置或序列中。
  3. tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])

    • 最终,tp 保存了所有正类预测的数量。
  4. fp = torch.sum(temp_inputs, axis=[0,1]) - tp

    • torch.sum(temp_inputs, axis=[0,1]) 计算了所有预测为正类的数量,无论它们是否真的是正类。
    • 然后从中减去 tp,得到假正类的数量(FP),即模型错误地预测为正类的数量。
  5. fn = torch.sum(temp_target[...,:-1], axis=[0,1]) - tp

    • torch.sum(temp_target[...,:-1], axis=[0,1]) 计算了实际为正类的数量,无论模型是否预测它们为正类。
    • 然后从中减去 tp,得到假负类的数量(FN),即实际为正类但模型没有预测为正类的数量。

综上所述,这段代码通过计算TP、FP和FN,来评估模型在二分类任务中的性能。这些值是计算精确度(Precision)、召回率(Recall)和F1得分的关键。

相关推荐
爱写代码的小朋友1 分钟前
生成式人工智能对学习生态的重构:从“辅助工具”到“依赖风险”的平衡难题
人工智能·学习·重构
唤醒手腕21 分钟前
唤醒手腕2025年最新机器学习K近邻算法详细教程
人工智能·机器学习·近邻算法
却道天凉_好个秋22 分钟前
深度学习(十七):全批量梯度下降 (BGD)、随机梯度下降 (SGD) 和小批量梯度下降 (MBGD)
人工智能·深度学习·梯度下降
我星期八休息40 分钟前
C++异常处理全面解析:从基础到应用
java·开发语言·c++·人工智能·python·架构
常州晟凯电子科技41 分钟前
海思Hi3516CV610/Hi3516CV608开发笔记之环境搭建和SDK编译
人工智能·笔记·嵌入式硬件·物联网
William_cl41 分钟前
2025 年 AI + 编程工具实战:用新工具提升 50% 开发效率
人工智能
2401_841495641 小时前
【数据结构】汉诺塔问题
java·数据结构·c++·python·算法·递归·
哈里谢顿2 小时前
Celery app 实例为何能在 beat、worker 等进程中“传递”?源码与机制详解
python
珊珊而川2 小时前
Reflexion对ReAct的改进
人工智能
量化交易曾小健(金融号)2 小时前
GPT-5 Instant能修补模型情商漏洞了
人工智能