计算Dice损失的函数

计算Dice损失的函数

python 复制代码
def Dice_loss(inputs, target, beta=1, smooth = 1e-5):
    n,c, h, w = inputs.size()    #
    nt,ht, wt, ct = target.size()  #nt,
    
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
    temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1)
    temp_target = target.view(n, -1, ct)

    #--------------------------------------------#
    #   计算dice loss
    #--------------------------------------------#
    tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])
    fp = torch.sum(temp_inputs                       , axis=[0,1]) - tp
    fn = torch.sum(temp_target[...,:-1]              , axis=[0,1]) - tp

    score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
    dice_loss = 1 - torch.mean(score)
    return dice_loss

这段代码是用于计算二分类问题的混淆矩阵(Confusion Matrix)中的True Positives(TP),False Positives(FP)和False Negatives(FN)。在混淆矩阵中,TP表示模型正确预测为正类的数量,FP表示模型错误地预测为正类的数量,FN表示实际为正类但模型没有预测为正类的数量。

让我们分解这段代码来理解每个部分的作用:

  1. temp_target[..., :-1] * temp_inputs

    • temp_target[..., :-1] 获取 temp_target 张量中除了最后一维之外的所有元素。:-1 是一个切片操作,它表示从开始到倒数第二个元素。
    • temp_inputs 是模型的预测输出。
    • 这两个张量进行元素相乘,只有当 temp_target 的最后一维等于 1 时,才会乘以 temp_inputs 对应的位置的值。这模拟了只有当预测和真实标签都为正类(1)时,才认为是真正的正类检测。
  2. torch.sum(..., axis=[0,1])

    • 这是一个求和操作,计算在指定维度上(这里是第0维和第1维)的总和。
    • axis=[0,1] 表示在第0维和第1维上进行求和。通常,第0维代表批量大小(batch size),第1维代表序列长度(sequence length)。
    • 这样做的效果是将所有正类预测的和(TP)汇总起来,无论它们在批量中的哪个位置或序列中。
  3. tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])

    • 最终,tp 保存了所有正类预测的数量。
  4. fp = torch.sum(temp_inputs, axis=[0,1]) - tp

    • torch.sum(temp_inputs, axis=[0,1]) 计算了所有预测为正类的数量,无论它们是否真的是正类。
    • 然后从中减去 tp,得到假正类的数量(FP),即模型错误地预测为正类的数量。
  5. fn = torch.sum(temp_target[...,:-1], axis=[0,1]) - tp

    • torch.sum(temp_target[...,:-1], axis=[0,1]) 计算了实际为正类的数量,无论模型是否预测它们为正类。
    • 然后从中减去 tp,得到假负类的数量(FN),即实际为正类但模型没有预测为正类的数量。

综上所述,这段代码通过计算TP、FP和FN,来评估模型在二分类任务中的性能。这些值是计算精确度(Precision)、召回率(Recall)和F1得分的关键。

相关推荐
ujainu9 小时前
CANN仓库中的AIGC多模态统一抽象工程:昇腾AI软件栈如何用一套接口驾驭图文音视
人工智能·aigc
少云清9 小时前
【金融项目实战】7_接口测试 _代码实现接口测试(重点)
python·金融项目实战
深蓝电商API9 小时前
爬虫IP封禁后的自动切换与检测机制
爬虫·python
m0_550024639 小时前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
AC赳赳老秦9 小时前
代码生成超越 GPT-4:DeepSeek-V4 编程任务实战与 2026 开发者效率提升指南
数据库·数据仓库·人工智能·科技·rabbitmq·memcache·deepseek
液态不合群9 小时前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法
饭饭大王6669 小时前
当 AI 系统开始“自省”——在 `ops-transformer` 中嵌入元认知能力
人工智能·深度学习·transformer
ujainu9 小时前
CANN仓库中的AIGC可移植性工程:昇腾AI软件栈如何实现“一次开发,多端部署”的跨生态兼容
人工智能·aigc
初恋叫萱萱9 小时前
CANN 生态实战指南:从零构建一个高性能边缘 AI 应用的完整流程
人工智能
Lethehong9 小时前
CANN ops-nn仓库深度解读:AIGC时代的神经网络算子优化实践
人工智能·神经网络·aigc