Numpy array和Pytorch tensor的区别

1.Numpy array和Pytorch tensor的区别

笔记来源:

1.Comparison between Pytorch Tensor and Numpy Array

2.numpy.array

4.Tensors for Neural Networks, Clearly Explained!!!

5.What is a Tensor in Machine Learning?

1.1 Numpy Array

Numpy array can only hold elements of a single data type.

Create NumPy ndarray (1D array)

python 复制代码
import numpy as np
arr_1D = np.array([1,2,3])
print(arr_1D)

Create NumPy ndarray (2D array)

python 复制代码
import numpy as np
arr_2D = np.array([[1,2,3],[1,2,3],[1,2,3]])
print(arr_2D)

Create NumPy ndarray (3D array)

python 复制代码
import numpy as np
arr_3D = np.array([[[1,2,3],[1,2,3],[1,2,3],],[[1,2,3],[1,2,3],[1,2,3],],[[1,2,3],[1,2,3],[1,2,3]]])
print(arr_3D)

1.2 Pytorch Tensor

A torch.Tensor is a multi-dimensional matrix containing elements of a single data type.

Pytorch tensors are similar to numpy arrays, but can also be operated on CUDA-capable Nvidia GPU.



0-dimensional Tensor

1-dimensional Tensor

2-dimensional Tensor

n-dimensional Tensor

1.3 Difference

1.Numpy arrays are mainly used in typical machine learning algorithms (such as k-means or Decision Tree in scikit-learn) whereas pytorch tensors are mainly used in deep learning which requires heavy matrix computation.

2.The numpy arrays are the core functionality of the numpy package designed to support faster mathematical operations. Unlike python's inbuilt list data structure, they can only hold elements of a single data type. Library like pandas which is used for data preprocessing is built around the numpy array. Pytorch tensors are similar to numpy arrays, but can also be operated on CUDA-capable Nvidia GPU.The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU.

3.Unlike numpy arrays, while creating pytorch tensor, it also accepts two other arguments called the device_type (whether the computation happens on CPU or GPU) and the requires_grad (which is used to compute the derivatives).

相关推荐
一车小面包7 小时前
人工智能中的线性代数总结--简单篇
人工智能·numpy
HuggingFace15 小时前
ZeroGPU Spaces 加速实践:PyTorch 提前编译全解析
pytorch·zerogpu
Luchang-Li20 小时前
sglang pytorch NCCL hang分析
pytorch·python·nccl
Gyoku Mint1 天前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
豆浩宇1 天前
Conda环境隔离和PyCharm配置,完美同时运行PaddlePaddle和PyTorch
人工智能·pytorch·算法·计算机视觉·pycharm·conda·paddlepaddle
㱘郳2 天前
cifar10分类对比:使用PyTorch卷积神经网络和SVM
pytorch·分类·cnn
Tiger Z2 天前
《动手学深度学习v2》学习笔记 | 2.4 微积分 & 2.5 自动微分
pytorch·深度学习·ai
先做个垃圾出来………2 天前
PyTorch 模型文件介绍
人工智能·pytorch·python
我不是小upper2 天前
一文详解深度学习中神经网络的各层结构与功能!
人工智能·pytorch·深度学习
钱彬 (Qian Bin)3 天前
一文掌握工业缺陷检测项目实战(Pytorch算法训练、部署、C++ DLL制作、Qt集成)
c++·pytorch·python·qt·实战·工业缺陷检测·faster rcnn