Numpy array和Pytorch tensor的区别

1.Numpy array和Pytorch tensor的区别

笔记来源:

1.Comparison between Pytorch Tensor and Numpy Array

2.numpy.array

4.Tensors for Neural Networks, Clearly Explained!!!

5.What is a Tensor in Machine Learning?

1.1 Numpy Array

Numpy array can only hold elements of a single data type.

Create NumPy ndarray (1D array)

python 复制代码
import numpy as np
arr_1D = np.array([1,2,3])
print(arr_1D)

Create NumPy ndarray (2D array)

python 复制代码
import numpy as np
arr_2D = np.array([[1,2,3],[1,2,3],[1,2,3]])
print(arr_2D)

Create NumPy ndarray (3D array)

python 复制代码
import numpy as np
arr_3D = np.array([[[1,2,3],[1,2,3],[1,2,3],],[[1,2,3],[1,2,3],[1,2,3],],[[1,2,3],[1,2,3],[1,2,3]]])
print(arr_3D)

1.2 Pytorch Tensor

A torch.Tensor is a multi-dimensional matrix containing elements of a single data type.

Pytorch tensors are similar to numpy arrays, but can also be operated on CUDA-capable Nvidia GPU.



0-dimensional Tensor

1-dimensional Tensor

2-dimensional Tensor

n-dimensional Tensor

1.3 Difference

1.Numpy arrays are mainly used in typical machine learning algorithms (such as k-means or Decision Tree in scikit-learn) whereas pytorch tensors are mainly used in deep learning which requires heavy matrix computation.

2.The numpy arrays are the core functionality of the numpy package designed to support faster mathematical operations. Unlike python's inbuilt list data structure, they can only hold elements of a single data type. Library like pandas which is used for data preprocessing is built around the numpy array. Pytorch tensors are similar to numpy arrays, but can also be operated on CUDA-capable Nvidia GPU.The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU.

3.Unlike numpy arrays, while creating pytorch tensor, it also accepts two other arguments called the device_type (whether the computation happens on CPU or GPU) and the requires_grad (which is used to compute the derivatives).

相关推荐
OreoCC10 小时前
第R3周:RNN-心脏病预测(pytorch版)
人工智能·pytorch·rnn
怪味&先森13 小时前
利用pytorch对加噪堆叠自编码器在MNIST数据集进行训练和验证
人工智能·pytorch·python
qq_2739002315 小时前
Pytorch torch.nn.utils.rnn.pad_sequence 介绍
人工智能·pytorch·python·rnn·深度学习
sumatch16 小时前
PyTorch 笔记
人工智能·pytorch·笔记
qq_2739002319 小时前
Pytorch torch.utils.data.dataloader.default_collate 介绍
人工智能·pytorch·python
一颗小树x1 天前
NVIDIA Jetson 环境安装指导 PyTorch | Conda | cudnn | docker
人工智能·pytorch·conda
Listennnn1 天前
结构化剪枝(Structured Pruning)与动态蒸馏(Dynamic Distillation)
pytorch·深度学习·剪枝
Y1nhl1 天前
搜广推面经六十八
人工智能·pytorch·深度学习·学习·大数据技术
橙色小博1 天前
PyTorch中的各种损失函数的详细解析与通俗理解!
人工智能·pytorch·python·深度学习·神经网络·机器学习
James. 常德 student1 天前
多GPU训练
人工智能·pytorch·深度学习