Kafka官方提供的RoundRobinPartitioner出现奇偶数据不均匀

Kafka官方提供的RoundRobinPartitioner出现奇偶数据不均匀

参考:

https://www.cnblogs.com/cbc-onne/p/18140043

  1. 使用RoundRobinPartitioner
bash 复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.clients.producer;

import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * The "Round-Robin" partitioner - MODIFIED TO WORK PROPERLY WITH STICKY PARTITIONING (KIP-480)
 * <p>
 * This partitioning strategy can be used when user wants to distribute the writes to all
 * partitions equally. This is the behaviour regardless of record key hash.
 */
public class RoundRobinPartitioner implements Partitioner {
    private static final Logger LOGGER = LoggerFactory.getLogger(RoundRobinPartitioner.class);
    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();
    private final ConcurrentMap<String, Queue<Integer>> topicPartitionQueueMap = new ConcurrentHashMap<>();

    public void configure(Map<String, ?> configs) {
    }

    /**
     * Compute the partition for the given record.
     *
     * @param topic      The topic name
     * @param key        The key to partition on (or null if no key)
     * @param keyBytes   serialized key to partition on (or null if no key)
     * @param value      The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster    The current cluster metadata
     */
    @Override
    public int partition(
        String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        Queue<Integer> partitionQueue = partitionQueueComputeIfAbsent(topic);
        Integer queuedPartition = partitionQueue.poll();
        if (queuedPartition != null) {
            LOGGER.trace("Partition chosen from queue: {}", queuedPartition);
            return queuedPartition;
        } else {
            List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
            int numPartitions = partitions.size();
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (!availablePartitions.isEmpty()) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                int partition = availablePartitions.get(part).partition();
                LOGGER.trace("Partition chosen: {}", partition);
                return partition;
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        }
    }

    private int nextValue(String topic) {
        AtomicInteger counter =
            topicCounterMap.computeIfAbsent(
                topic,
                k -> {
                    return new AtomicInteger(0);
                });
        return counter.getAndIncrement();
    }

    private Queue<Integer> partitionQueueComputeIfAbsent(String topic) {
        return topicPartitionQueueMap.computeIfAbsent(topic, k -> {
            return new ConcurrentLinkedQueue<>();
        });
    }

    public void close() {
    }

    /**
     * Notifies the partitioner a new batch is about to be created. When using the sticky partitioner,
     * this method can change the chosen sticky partition for the new batch.
     *
     * @param topic         The topic name
     * @param cluster       The current cluster metadata
     * @param prevPartition The partition previously selected for the record that triggered a new
     *                      batch
     */
    @Override
    public void onNewBatch(String topic, Cluster cluster, int prevPartition) {
        LOGGER.trace("New batch so enqueuing partition {} for topic {}", prevPartition, topic);
        Queue<Integer> partitionQueue = partitionQueueComputeIfAbsent(topic);
        partitionQueue.add(prevPartition);
    }
}
相关推荐
小小工匠9 分钟前
架构思维:构建高并发扣减服务_分布式无主架构
分布式·架构·分布式无主架构
冰茶_32 分钟前
掌握LINQ:查询语法与方法语法全解析
sql·学习·microsoft·微软·c#·linq
菠萝崽.2 小时前
Elasticsearch进阶篇-DSL
大数据·分布式·elasticsearch·搜索引擎·全文检索·jenkins·springboot
Uranus^2 小时前
深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
spring boot·kafka·消息队列·分布式系统
{⌐■_■}2 小时前
【kafka】kafka概念,使用技巧go示例
golang·kafka·linq
hong_zc3 小时前
服务端高并发分布式结构演进之路
分布式
461K.4 小时前
写spark程序数据计算( 数据库的计算,求和,汇总之类的)连接mysql数据库,写入计算结果
大数据·分布式·spark
却道天凉_好个秋12 小时前
系统架构设计(九):分布式架构与微服务
分布式·架构·系统架构
predisw16 小时前
kafka connect 大概了解
分布式·kafka
计算机毕设定制辅导-无忧学长18 小时前
RabbitMQ 快速上手:安装配置与 HelloWorld 实践(二)
分布式·rabbitmq·ruby