Kafka官方提供的RoundRobinPartitioner出现奇偶数据不均匀

Kafka官方提供的RoundRobinPartitioner出现奇偶数据不均匀

参考:

https://www.cnblogs.com/cbc-onne/p/18140043

  1. 使用RoundRobinPartitioner
bash 复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.clients.producer;

import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * The "Round-Robin" partitioner - MODIFIED TO WORK PROPERLY WITH STICKY PARTITIONING (KIP-480)
 * <p>
 * This partitioning strategy can be used when user wants to distribute the writes to all
 * partitions equally. This is the behaviour regardless of record key hash.
 */
public class RoundRobinPartitioner implements Partitioner {
    private static final Logger LOGGER = LoggerFactory.getLogger(RoundRobinPartitioner.class);
    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap<>();
    private final ConcurrentMap<String, Queue<Integer>> topicPartitionQueueMap = new ConcurrentHashMap<>();

    public void configure(Map<String, ?> configs) {
    }

    /**
     * Compute the partition for the given record.
     *
     * @param topic      The topic name
     * @param key        The key to partition on (or null if no key)
     * @param keyBytes   serialized key to partition on (or null if no key)
     * @param value      The value to partition on or null
     * @param valueBytes serialized value to partition on or null
     * @param cluster    The current cluster metadata
     */
    @Override
    public int partition(
        String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        Queue<Integer> partitionQueue = partitionQueueComputeIfAbsent(topic);
        Integer queuedPartition = partitionQueue.poll();
        if (queuedPartition != null) {
            LOGGER.trace("Partition chosen from queue: {}", queuedPartition);
            return queuedPartition;
        } else {
            List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
            int numPartitions = partitions.size();
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (!availablePartitions.isEmpty()) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                int partition = availablePartitions.get(part).partition();
                LOGGER.trace("Partition chosen: {}", partition);
                return partition;
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        }
    }

    private int nextValue(String topic) {
        AtomicInteger counter =
            topicCounterMap.computeIfAbsent(
                topic,
                k -> {
                    return new AtomicInteger(0);
                });
        return counter.getAndIncrement();
    }

    private Queue<Integer> partitionQueueComputeIfAbsent(String topic) {
        return topicPartitionQueueMap.computeIfAbsent(topic, k -> {
            return new ConcurrentLinkedQueue<>();
        });
    }

    public void close() {
    }

    /**
     * Notifies the partitioner a new batch is about to be created. When using the sticky partitioner,
     * this method can change the chosen sticky partition for the new batch.
     *
     * @param topic         The topic name
     * @param cluster       The current cluster metadata
     * @param prevPartition The partition previously selected for the record that triggered a new
     *                      batch
     */
    @Override
    public void onNewBatch(String topic, Cluster cluster, int prevPartition) {
        LOGGER.trace("New batch so enqueuing partition {} for topic {}", prevPartition, topic);
        Queue<Integer> partitionQueue = partitionQueueComputeIfAbsent(topic);
        partitionQueue.add(prevPartition);
    }
}
相关推荐
腾讯云中间件6 小时前
Kafka 集群上云新突破:腾讯云 CKafka 联邦迁移方案
云原生·kafka·消息队列
跟着珅聪学java6 小时前
在电商系统中,如何确保库存扣减的原子性
分布式
JH30738 小时前
Redisson 看门狗机制:让分布式锁“活”下去的智能保镖
分布式
一点 内容10 小时前
深入理解分布式共识算法 Raft:从原理到实践
分布式·区块链·共识算法
8Qi810 小时前
分布式锁-redission
java·redis·分布式·redisson
10 小时前
鸿蒙——分布式数据库
数据库·分布式
jiayong2311 小时前
微服务架构与 Spring 生态完全指南
kafka·rabbitmq·rocketmq
Hui Baby11 小时前
分布式多阶段入参参数获取
分布式
阿拉斯攀登13 小时前
Spring Cloud Alibaba 生态中 RocketMQ 最佳实践
分布式·微服务·rocketmq·springcloud·cloudalibaba
无锡布里渊14 小时前
感温光纤 DTS 系统 vs 感温电缆 对比分析报告
分布式·实时监测·分布式光纤测温·线型感温火灾监测·感温电缆