【408考点之数据结构】图的遍历

图的遍历

图的遍历是指从图中的某个顶点出发,按照一定的规则访问图中所有顶点,并使每个顶点仅被访问一次。图的遍历包括两种主要方法:深度优先搜索(DFS)和广度优先搜索(BFS)。这两种遍历方法在算法设计、路径搜索、网络分析等方面有广泛的应用。

深度优先搜索(DFS)

深度优先搜索类似于树的先序遍历,采用递归或栈的方式实现。DFS 从一个起始顶点开始,访问一个顶点后,继续访问它的未访问过的邻接顶点,直到所有邻接顶点都被访问过为止,然后回溯到上一个顶点,继续这一过程,直到所有顶点都被访问过为止。

实现步骤

  1. 访问起始顶点,并标记为已访问。
  2. 从该顶点出发,依次访问每个未被访问的邻接顶点,重复步骤 1。
  3. 若当前顶点的所有邻接顶点都被访问过,则回溯到上一个顶点,继续访问其他未被访问的邻接顶点。
  4. 重复以上步骤,直到所有顶点都被访问过。

代码实现

c 复制代码
#include <stdio.h>
#include <stdlib.h>

#define MAXVEX 100

typedef struct EdgeNode {
    int adjvex;
    struct EdgeNode *next;
} EdgeNode;

typedef struct VertexNode {
    int data;
    EdgeNode *firstEdge;
} VertexNode, AdjList[MAXVEX];

typedef struct {
    AdjList adjList;
    int numVertexes, numEdges;
} GraphAdjList;

void DFS(GraphAdjList *G, int i, int *visited) {
    EdgeNode *p;
    visited[i] = 1;
    printf("%d ", G->adjList[i].data);
    p = G->adjList[i].firstEdge;
    while (p) {
        if (!visited[p->adjvex]) {
            DFS(G, p->adjvex, visited);
        }
        p = p->next;
    }
}

void DFSTraverse(GraphAdjList *G) {
    int visited[MAXVEX];
    for (int i = 0; i < G->numVertexes; i++) {
        visited[i] = 0;
    }
    for (int i = 0; i < G->numVertexes; i++) {
        if (!visited[i]) {
            DFS(G, i, visited);
        }
    }
}
广度优先搜索(BFS)

广度优先搜索类似于树的层次遍历,采用队列的方式实现。BFS 从一个起始顶点开始,访问一个顶点后,将其所有未被访问的邻接顶点依次入队,访问完当前顶点后,出队下一个顶点,继续这一过程,直到所有顶点都被访问过为止。

实现步骤

  1. 访问起始顶点,并标记为已访问,将该顶点入队。
  2. 当队列不为空时,出队一个顶点,访问它的所有未被访问的邻接顶点,并将这些邻接顶点依次入队。
  3. 重复步骤 2,直到队列为空。

代码实现

c 复制代码
#include <stdio.h>
#include <stdlib.h>

#define MAXVEX 100

typedef struct EdgeNode {
    int adjvex;
    struct EdgeNode *next;
} EdgeNode;

typedef struct VertexNode {
    int data;
    EdgeNode *firstEdge;
} VertexNode, AdjList[MAXVEX];

typedef struct {
    AdjList adjList;
    int numVertexes, numEdges;
} GraphAdjList;

void BFS(GraphAdjList *G, int i, int *visited) {
    EdgeNode *p;
    int queue[MAXVEX];
    int front = 0, rear = 0;

    printf("%d ", G->adjList[i].data);
    visited[i] = 1;
    queue[rear++] = i;

    while (front != rear) {
        i = queue[front++];
        p = G->adjList[i].firstEdge;
        while (p) {
            if (!visited[p->adjvex]) {
                printf("%d ", G->adjList[p->adjvex].data);
                visited[p->adjvex] = 1;
                queue[rear++] = p->adjvex;
            }
            p = p->next;
        }
    }
}

void BFSTraverse(GraphAdjList *G) {
    int visited[MAXVEX];
    for (int i = 0; i < G->numVertexes; i++) {
        visited[i] = 0;
    }
    for (int i = 0; i < G->numVertexes; i++) {
        if (!visited[i]) {
            BFS(G, i, visited);
        }
    }
}
使用场景
  1. 网络爬虫:通过图的遍历算法,可以从一个网页开始,逐步访问所有相关网页。
  2. 社交网络分析:通过图的遍历算法,可以找出社交网络中各个用户之间的关系。
  3. 路径搜索:在地图应用中,通过图的遍历算法可以找到从一个地点到另一个地点的路径。
  4. 电路分析:在电路设计中,通过图的遍历算法可以分析电路中各个元件之间的连接关系。
相关推荐
莫叫石榴姐19 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
茶猫_1 小时前
力扣面试题 - 25 二进制数转字符串
c语言·算法·leetcode·职场和发展
Hera_Yc.H2 小时前
数据结构之一:复杂度
数据结构
肥猪猪爸3 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
linux_carlos3 小时前
环形缓冲区
数据结构
readmancynn4 小时前
二分基本实现
数据结构·算法
萝卜兽编程4 小时前
优先级队列
c++·算法
Bucai_不才4 小时前
【数据结构】树——链式存储二叉树的基础
数据结构·二叉树
盼海4 小时前
排序算法(四)--快速排序
数据结构·算法·排序算法
一直学习永不止步4 小时前
LeetCode题练习与总结:最长回文串--409
java·数据结构·算法·leetcode·字符串·贪心·哈希表