动手学深度学习(Pytorch版)代码实践 -计算机视觉-47转置卷积

47转置卷积


python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

# 输入矩阵X和卷积核矩阵K实现基本的转置卷积运算
def trans_conv(X, K):
    h, w = K.shape
    Y = torch.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
    for i in range(X.shape[0]):
        for j in range(X.shape[1]):
            Y[i: i + h, j: j + w] += X[i, j] * K
    return Y

X = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
print(trans_conv(X, K))
"""
tensor([[ 0.,  0.,  1.],
        [ 0.,  4.,  6.],
        [ 4., 12.,  9.]])
"""

# 使用高级API获得相同的结果
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, bias=False)
tconv.weight.data = K
print(tconv(X))
"""
tensor([[[[ 0.,  0.,  1.],
          [ 0.,  4.,  6.],
          [ 4., 12.,  9.]]]], grad_fn=<SlowConvTranspose2DBackward>)
"""

# 填充、步幅和多通道
# 当将高和宽两侧的填充数指定为1时,转置卷积的输出中将删除第一和最后的行与列。
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, padding=1, bias=False)
tconv.weight.data = K
print(tconv(X))
# tensor([[[[4.]]]], grad_fn=<SlowConvTranspose2DBackward>)

# 步幅为2的转置卷积的输出
tconv = nn.ConvTranspose2d(1, 1, kernel_size=2, stride=2, bias=False)
tconv.weight.data = K
print(tconv(X))
"""
tensor([[[[0., 0., 0., 1.],
          [0., 0., 2., 3.],
          [0., 2., 0., 3.],
          [4., 6., 6., 9.]]]]
"""

X = torch.rand(size=(1, 10, 16, 16))
conv = nn.Conv2d(10, 20, kernel_size=5, padding=2, stride=3)
tconv = nn.ConvTranspose2d(20, 10, kernel_size=5, padding=2, stride=3)
print(conv(X).shape) # torch.Size([1, 20, 6, 6])
print(tconv(conv(X)).shape) # torch.Size([1, 10, 16, 16])
print(tconv(conv(X)).shape == X.shape) # True

# 与矩阵变换的联系
X = torch.arange(9.0).reshape(3, 3)
K = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
Y = d2l.corr2d(X, K)
print(Y)
"""
tensor([[27., 37.],
        [57., 67.]])
"""

# 将卷积核K重写为包含大量0的稀疏权重矩阵W。 权重矩阵的形状是4 * 9
def kernel2matrix(K):
    k, W = torch.zeros(5), torch.zeros((4, 9))
    k[:2], k[3:5] = K[0, :], K[1, :]
    W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
    return W

W = kernel2matrix(K)
print(W)
"""
tensor([[1., 2., 0., 3., 4., 0., 0., 0., 0.],
        [0., 1., 2., 0., 3., 4., 0., 0., 0.],
        [0., 0., 0., 1., 2., 0., 3., 4., 0.],
        [0., 0., 0., 0., 1., 2., 0., 3., 4.]])
"""

print(Y == torch.matmul(W, X.reshape(-1)).reshape(2, 2))
"""
tensor([[True, True],
        [True, True]])
"""

# 使用矩阵乘法来实现转置卷积
Z = trans_conv(Y, K)
print(Z == torch.matmul(W.T, Y.reshape(-1)).reshape(3, 3))
"""
tensor([[True, True, True],
        [True, True, True],
        [True, True, True]])
"""
相关推荐
夏莉莉iy2 分钟前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
pchmi31 分钟前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#
deflag1 小时前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_0011 小时前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
造夢先森2 小时前
Transformer & LLaMA
深度学习·transformer·llama
神经美学_茂森3 小时前
神经网络防“失忆“秘籍:弹性权重固化如何让AI学会“温故知新“
人工智能·深度学习·神经网络
阿_旭3 小时前
【超详细】神经网络的可视化解释
人工智能·深度学习·神经网络
武乐乐~3 小时前
QARepVGG--含demo实现
深度学习
机器视觉知识推荐、就业指导3 小时前
【数字图像处理二】图像增强与空域处理
图像处理·人工智能·经验分享·算法·计算机视觉
陈辛chenxin3 小时前
【论文带读系列(1)】《End-to-End Object Detection with Transformers》论文超详细带读 + 翻译
人工智能·目标检测·计算机视觉