【AI研发工具包】sklearn教程(Scikit-learn)

目录

[1. 引言](#1. 引言)

[2. 安装sklearn](#2. 安装sklearn)

[3. 导入sklearn](#3. 导入sklearn)

[4. 加载数据集](#4. 加载数据集)

[5. 数据预处理](#5. 数据预处理)

[6. 训练模型](#6. 训练模型)

[7. 评估模型](#7. 评估模型)

[8. 保存和加载模型](#8. 保存和加载模型)

[9. 自定义数据](#9. 自定义数据)

[10. 深入sklearn](#10. 深入sklearn)

[11. 注意事项](#11. 注意事项)


1. 引言

Scikit-learn(简称sklearn)是Python中一个非常流行的机器学习库,它提供了各种机器学习算法的实现,包括分类、回归、聚类、降维等。sklearn建立在NumPy、SciPy和Matplotlib等库之上,为数据科学家和机器学习爱好者提供了简单、高效的数据挖掘和数据分析工具。

2. 安装sklearn

安装sklearn的前提是已经安装了Python、NumPy和SciPy。你可以使用pip来安装sklearn:

bash 复制代码
pip install -U scikit-learn

3. 导入sklearn

在Python脚本中,你可以根据需要导入sklearn中的不同模块。以下是一些常见的导入方式:

python 复制代码
from sklearn.datasets import load_iris, make_regression  
from sklearn.model_selection import train_test_split  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.linear_model import LinearRegression  
from sklearn.metrics import confusion_matrix, classification_report  
from sklearn.preprocessing import StandardScaler

4. 加载数据集

sklearn自带了一些标准数据集,如鸢尾花数据集(iris)和手写数字数据集(digits)。你也可以使用make_regression等函数来生成模拟数据。

python 复制代码
# 加载鸢尾花数据集  
iris = load_iris()  
X = iris.data  # 特征变量  
y = iris.target  # 目标值  
  
# 生成模拟回归数据  
X_reg, y_reg = make_regression(n_samples=100, n_features=1, noise=0.1)

5. 数据预处理

在训练模型之前,通常需要对数据进行预处理,如数据清洗、特征缩放等。sklearn提供了丰富的数据预处理工具。

python 复制代码
# 数据分割为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  
  
# 特征缩放(标准化)  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_test_scaled = scaler.transform(X_test)

6. 训练模型

选择适当的机器学习算法,并使用训练数据来训练模型。

python 复制代码
# 使用K近邻算法进行分类  
knn = KNeighborsClassifier(n_neighbors=3)  
knn.fit(X_train_scaled, y_train)  
  
# 使用线性回归算法进行回归  
reg = LinearRegression()  
reg.fit(X_reg[:, np.newaxis], y_reg)

7. 评估模型

使用测试集来评估模型的性能。

python 复制代码
# 预测测试集结果  
y_pred_class = knn.predict(X_test_scaled)  
y_pred_reg = reg.predict(X_reg[:, np.newaxis])  
  
# 评估分类模型  
print(confusion_matrix(y_test, y_pred_class))  
print(classification_report(y_test, y_pred_class))  
  
# 评估回归模型(使用R^2分数或其他指标)  
score = reg.score(X_reg[:, np.newaxis], y_reg)  
print("R^2 Score:", score)

8. 保存和加载模型

你可以使用joblib库来保存和加载训练好的模型。

python 复制代码
from joblib import dump, load  
  
# 保存模型  
dump(knn, 'knn_model.joblib')  
  
# 加载模型  
loaded_knn = load('knn_model.joblib')

9. 自定义数据

除了使用sklearn自带的数据集,你还可以使用自己的数据集。确保数据集的格式正确,并进行适当的预处理。

10. 更多

sklearn还提供了许多高级功能,如流水线(Pipeline)、集成方法(Ensemble Methods)、网格搜索(GridSearchCV)等,用于优化模型和提高性能。你可以参考官方文档和教程来深入了解这些功能。

11. 注意事项

  • 确保理解所选机器学习算法的原理和适用场景。
  • 适当调整模型的参数以优化性能。
  • 注意数据的预处理和特征选择对模型性能的影响。
  • 使用交叉验证等技术来评估模型的泛化能力。
  • 不断探索和尝试新的算法和技术,以找到最适合你问题的解决方案。
相关推荐
郝学胜-神的一滴4 天前
机器学习特征预处理:缺失值处理全攻略
人工智能·python·程序人生·机器学习·性能优化·sklearn
灯下夜无眠4 天前
sklearn中fit、transform、fit_transform用法详解
人工智能·python·sklearn
郝学胜-神的一滴4 天前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn
郝学胜-神的一滴10 天前
机器学习特征提取:TF-IDF模型详解与实践指南
开发语言·人工智能·python·程序人生·机器学习·tf-idf·sklearn
郝学胜-神的一滴16 天前
机器学习数据工程之基石:论数据集划分之道与sklearn实践
开发语言·人工智能·python·程序人生·机器学习·sklearn
郝学胜-神的一滴18 天前
数据为壤,特征为苗:机器学习特征提取艺术探微
人工智能·程序人生·机器学习·scikit-learn·sklearn
郝学胜-神的一滴20 天前
机器学习数据集完全指南:从公开资源到Sklearn实战
人工智能·python·程序人生·机器学习·scikit-learn·sklearn
python机器学习ML23 天前
论文复现-以动物图像分类为例进行多模型性能对比分析
人工智能·python·神经网络·机器学习·计算机视觉·scikit-learn·sklearn
Jerryhut1 个月前
sklearn函数总结十二 —— 聚类分析算法K-Means
算法·kmeans·sklearn
咨询qq 8762239651 个月前
永磁同步电机,基于扩展卡尔曼滤波算法无传感器仿真模型,s函数编写算法,基于matlab/sim...
sklearn