kafka的工作原理与常见问题

定义

kafka是一个分布式的基于发布/订阅模式的消息队列(message queue),主要应用于大数据的实时处理领域
消息队列工作原理

kafka的组成结构

kafka的基础架构主要有broker、生产者、消费者组构成,还包括zookeeper.

生产者负责发送消息

broker负责缓冲 消息,存储在磁盘的,所以数据不易丢失,broker中可以创建topic,每个topic又有partition和replication的概念

消费者组负责处理 消息,同一个消费者组的中消费者不能消费同一个partition中的数据

Kakfa如果要组件集群,则只需要注册到一个zk中就可以了,zk中还保留消息消费的进度或者说偏移量或者消费位置

工作流程

1)主线程首先将业务数据封装成ProducerRecord对象

2)调用send方法将消息放入消息收集器RecordAccumlator中暂存

3)Sender线程将消息信息构成请求

4)执行网络IO的线程从RecordAccumlator中将消息取出并批量发送出去

5)Kafka消费者从属于消费者组。消费者组内的消费者订阅的是相同主题,每个消费者接收主题的一部分分区的消息。

常见问题

1:kafka如何保证消息的顺序性?

Kafka 保证消息顺序性是指在单个分区内消息是有序的,即消费者从一个分区中读取消息时,这些消息是按照生产者发送的顺序来消费的。

为了保证消息的顺序性,你需要确保以下几点:
生产者将消息发送到同一个分区
不要并发写入同一个分区,否则可能会导致消息乱序。

消费者从分区中读取消息是按按顺序的并按顺序处理,保证了消息的顺序性。

2:kafka 生产者发送消息时如何来提高发送速率

要提高Kafka生产者的发送速率,可以调整Kafka生产者客户端的几个关键配置参数:

batch.size: 控制生产者一起发送数据的大小,默认是16KB。增加这个值可以批量发送更多的消息,从而提高发送速率。

linger.ms: 控制生产者发送数据之前等待更多消息加入到batch中的时间。降低这个值可以更快地发送小批量消息,默认值为0毫秒)。

max.request.size: 控制生产者能发送的最大消息大小。如果消息大小超过这个值,消息将会被截断。

buffer.memory: 控制生产者可以用来缓存消息的内存大小。增加这个值可以缓存更多的消息。

compression.type: 控制消息被压缩的方式,可以选择压缩类型来减少发送的数据量。

相关推荐
難釋懷1 小时前
分布式锁的原子性问题
分布式
ai_xiaogui2 小时前
【开源前瞻】从“咸鱼”到“超级个体”:谈谈 Panelai 分布式子服务器管理系统的设计架构与 UI 演进
服务器·分布式·架构·分布式架构·panelai·开源面板·ai工具开发
凯子坚持 c3 小时前
如何基于 CANN 原生能力,构建一个支持 QoS 感知的 LLM 推理调度器
分布式
飞升不如收破烂~3 小时前
Redis 分布式锁+接口幂等性使用+当下流行的限流方案「落地实操」+用户连续点击两下按钮的解决方案自用总结
数据库·redis·分布式
无心水3 小时前
分布式定时任务与SELECT FOR UPDATE:从致命陷阱到优雅解决方案(实战案例+架构演进)
服务器·人工智能·分布式·后端·spring·架构·wpf
Lansonli3 小时前
大数据Spark(八十):Action行动算子fold和aggregate使用案例
大数据·分布式·spark
闻哥4 小时前
Kafka高吞吐量核心揭秘:四大技术架构深度解析
java·jvm·面试·kafka·rabbitmq·springboot
invicinble5 小时前
对于分布式的原子能力
分布式
心态还需努力呀14 小时前
CANN仓库通信库:分布式训练的梯度压缩技术
分布式·cann