kafka的工作原理与常见问题

定义

kafka是一个分布式的基于发布/订阅模式的消息队列(message queue),主要应用于大数据的实时处理领域
消息队列工作原理

kafka的组成结构

kafka的基础架构主要有broker、生产者、消费者组构成,还包括zookeeper.

生产者负责发送消息

broker负责缓冲 消息,存储在磁盘的,所以数据不易丢失,broker中可以创建topic,每个topic又有partition和replication的概念

消费者组负责处理 消息,同一个消费者组的中消费者不能消费同一个partition中的数据

Kakfa如果要组件集群,则只需要注册到一个zk中就可以了,zk中还保留消息消费的进度或者说偏移量或者消费位置

工作流程

1)主线程首先将业务数据封装成ProducerRecord对象

2)调用send方法将消息放入消息收集器RecordAccumlator中暂存

3)Sender线程将消息信息构成请求

4)执行网络IO的线程从RecordAccumlator中将消息取出并批量发送出去

5)Kafka消费者从属于消费者组。消费者组内的消费者订阅的是相同主题,每个消费者接收主题的一部分分区的消息。

常见问题

1:kafka如何保证消息的顺序性?

Kafka 保证消息顺序性是指在单个分区内消息是有序的,即消费者从一个分区中读取消息时,这些消息是按照生产者发送的顺序来消费的。

为了保证消息的顺序性,你需要确保以下几点:
生产者将消息发送到同一个分区
不要并发写入同一个分区,否则可能会导致消息乱序。

消费者从分区中读取消息是按按顺序的并按顺序处理,保证了消息的顺序性。

2:kafka 生产者发送消息时如何来提高发送速率

要提高Kafka生产者的发送速率,可以调整Kafka生产者客户端的几个关键配置参数:

batch.size: 控制生产者一起发送数据的大小,默认是16KB。增加这个值可以批量发送更多的消息,从而提高发送速率。

linger.ms: 控制生产者发送数据之前等待更多消息加入到batch中的时间。降低这个值可以更快地发送小批量消息,默认值为0毫秒)。

max.request.size: 控制生产者能发送的最大消息大小。如果消息大小超过这个值,消息将会被截断。

buffer.memory: 控制生产者可以用来缓存消息的内存大小。增加这个值可以缓存更多的消息。

compression.type: 控制消息被压缩的方式,可以选择压缩类型来减少发送的数据量。

相关推荐
Yuer20256 小时前
用 Rust 做分布式查询引擎之前,我先写了一个最小执行 POC
开发语言·分布式·rust
张彦峰ZYF8 小时前
高并发场景下的缓存雪崩探析与应对策略
redis·分布式·缓存
张彦峰ZYF10 小时前
高并发场景下的缓存穿透问题探析与应对策略
redis·分布式
TT哇11 小时前
【RabbitMQ】@Autowired private RabbitTemplate rabbitTemplate;
java·分布式·rabbitmq
Rainly200011 小时前
工作日志之postgresql实现分布式锁
数据库·分布式·postgresql
ha_lydms12 小时前
3、Spark 函数_d/e/f/j/h/i/j/k/l
大数据·分布式·spark·函数·数据处理·dataworks·maxcompute
张彦峰ZYF12 小时前
优化分布式系统性能:热key识别与实战解决方案
redis·分布式·性能优化
张彦峰ZYF12 小时前
高并发场景下的大 Key 问题及应对策略
redis·分布式·缓存
张彦峰ZYF13 小时前
高并发场景下的缓存击穿问题探析与应对策略
redis·分布式·缓存
Wang's Blog16 小时前
Kafka: 生产者客户端工作机制深度解析
分布式·kafka