Elasticsearch分词器

Elasticsearch分词器

如何将一内容进行分词

json 复制代码
get _analyze
{
  "text":"你好,我是小明,很高兴认识你",
  "analyzer":"standard"
}

normalization-规范化

normalization会将我们查询的内容和ES存储的内容进行统一的格式化,比如大小写、单复数、没有含义的单词等做统一的处理,以保证在检索的时候能够匹配的到。

Character Filter-字符过滤器

在搜索时不参与匹配的字符进行过滤,分为三种

HTML Strip

过滤HTML标签

json 复制代码
put my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_filter": {
          "type": "html_strip",
          "escaped_tags": [
            "a"
          ]
        }
      },
      "analyzer": {
      "my_analyzer": {
        "tokenizer": "keyword",
        "char_filter": "my_filter"
      }
    }
    }
  }
}
get my_index/_analyze
{
  "analyzer":"my_analyzer",
  "text":"<p>你好<h1><a>小明</a></h2>"
}

Mapping

自定义过滤器

json 复制代码
put my_index1
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_filter": {
          "type": "mapping",
          "mappings":[
            "你 => *",
            "滚 => *"
            ]
        }
      },
      "analyzer": {
      "my_analyzer": {
        "tokenizer": "keyword",
        "char_filter": "my_filter"
      }
    }
    }
  }
}
get my_index1/_analyze
{
  "analyzer":"my_analyzer",
  "text":"你好,滚"
}

Patten Replace

正则替换,通过正则替换掉指定部分

json 复制代码
put my_index2
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_filter": {
          "type": "pattern_replace",
          "pattern":"(\\d{3})\\d{4}(\\d{4})",
          "replacement":"$1****$2"
        }
      },
      "analyzer": {
      "my_analyzer": {
        "tokenizer": "keyword",
        "char_filter": "my_filter"
      }
    }
    }
  }
}
get my_index2/_analyze
{
  "analyzer":"my_analyzer",
  "text":"15012345678"
}

令牌过滤器

灵牌过滤器有很多中,如转大小写,近义词等。参考官网 https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-thai-tokenizer.html

json 复制代码
//近义词
put my_index2
{
  "settings": {
    "analysis": {
      "filter": {
        "my_filter": {
          "type": "synonym",
          "synonyms":["你好=>hello","小明 =>xiaoming"]
        }
      },
      "analyzer": {
      "my_analyzer": {
        "tokenizer": "keyword",
        "filter": ["my_filter"]
      }
    }
    }
  }
}
get my_index2/_analyze
{
  "analyzer":"my_analyzer",
  "text":"你好"
}
//转小写
get my_index2/_analyze
{
  "tokenizer":"standard",
  "filter":["lowercase"],
  "text":["ABCDE"]
}

自定义分析器

  1. 自定义的字符串过滤器、令牌过滤器、分词器都要定义名字
  2. 过滤器、令牌过滤器可定义多个
json 复制代码
put my_index 
{
  "settings":{
    "analysis":{
      //自定义字符串过滤器
      "char_filter":{
        "my_char_filter":{
          "type":"mapping",
          "mappings":["& => and","| => or"]
        }
        
      },
      //自定义令牌过滤器
      "filter":{
        "my_filter":{
          "type":"stop",
          "stopwords":[
            "is",
            "in",
            "the",
            "a",
            "at"
            ]
        }
      },
      //自定义分词器
      "tokenizer":{
        "my_tonenizer":{
        "type":"pattern",
        "pattern":"[ ,.!?]"
        }
      },
      //自定义分析器,将自定义字符串过滤器、自定义令牌过滤器、自定义分词器赋值给分析器
      "analyzer":{
        "my_analyzer":{
          "type":"custom",
          "char_filter":["my_char_filter"],  //字符串过滤器可定义多个
          "filter":["my_filter"],    //自定义令牌过滤器可支持多个
          "tokenizer":"my_tonenizer"
        }
      }
    }
  }
}
get my_index/_analyze
{
  "analyzer":"my_analyzer",
  "text":"hello && hello | | word  is me the word ! how are you ? and me ,,,"
}

中文分词器(IK)

安装

在ES的plugins文件夹下创建ik文件夹,将ik分词器压缩包压缩,重启

两种分词方式

  1. ik_max_word:分词颗粒高
  2. id_smart:分词颗粒低
json 复制代码
get my_index/_analyze
{
  "analyzer":"ik_max_word",
  "text":"我爱你中华人民共和国"
}

get my_index/_analyze
{
  "analyzer":"ik_smart",
  "text":"我爱你中华人民共和国"
}

结果:

json 复制代码
{
  "tokens": [
    {
      "token": "我爱你",
      "start_offset": 0,
      "end_offset": 3,
      "type": "CN_WORD",
      "position": 0
    },
    {
      "token": "爱你",
      "start_offset": 1,
      "end_offset": 3,
      "type": "CN_WORD",
      "position": 1
    },
    {
      "token": "中华人民共和国",
      "start_offset": 3,
      "end_offset": 10,
      "type": "CN_WORD",
      "position": 2
    },
    {
      "token": "中华人民",
      "start_offset": 3,
      "end_offset": 7,
      "type": "CN_WORD",
      "position": 3
    },
    {
      "token": "中华",
      "start_offset": 3,
      "end_offset": 5,
      "type": "CN_WORD",
      "position": 4
    },
    {
      "token": "华人",
      "start_offset": 4,
      "end_offset": 6,
      "type": "CN_WORD",
      "position": 5
    },
    {
      "token": "人民共和国",
      "start_offset": 5,
      "end_offset": 10,
      "type": "CN_WORD",
      "position": 6
    },
    {
      "token": "人民",
      "start_offset": 5,
      "end_offset": 7,
      "type": "CN_WORD",
      "position": 7
    },
    {
      "token": "共和国",
      "start_offset": 7,
      "end_offset": 10,
      "type": "CN_WORD",
      "position": 8
    },
    {
      "token": "共和",
      "start_offset": 7,
      "end_offset": 9,
      "type": "CN_WORD",
      "position": 9
    },
    {
      "token": "国",
      "start_offset": 9,
      "end_offset": 10,
      "type": "CN_CHAR",
      "position": 10
    }
  ]
}
json 复制代码
{
  "tokens": [
    {
      "token": "我爱你",
      "start_offset": 0,
      "end_offset": 3,
      "type": "CN_WORD",
      "position": 0
    },
    {
      "token": "中华人民共和国",
      "start_offset": 3,
      "end_offset": 10,
      "type": "CN_WORD",
      "position": 1
    }
  ]
}

IK文件描述

  1. IKAnalyzer.xml:ik配置文件
  2. main.dic:主词库
  3. stopword.dic:英文停用词
  4. 特殊词库
  5. quantifier.dic:计量单位
  6. suffix.dic:行政单位
  7. surname.dic:百家姓
  8. prepositoin:语气词

自定义词库

在配置文件中配置,多个词典可用分号分开

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict">aaa.dic;bbb.dic</entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
	<!--用户可以在这里配置远程扩展字典 -->
	<!-- <entry key="remote_ext_dict">words_location</entry> -->
	<!--用户可以在这里配置远程扩展停止词字典-->
	<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

热更新

两种方式:基于远程词库和基于数据库

基于远程词库

  1. 修改配置文件,将remote_ext_dict或remote_ext_stopwords标签内属性换成rest接口地址
xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict">aaa.dic;bbb.dic</entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
	<!--用户可以在这里配置远程扩展字典 -->
	<!-- <entry key="remote_ext_dict">words_location</entry> -->
	<!--用户可以在这里配置远程扩展停止词字典-->
	<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
  1. 接口要求
  1. http请求需要返回两个header,一个是Last-Modified,一个是ETag,两个都是字符串,只要一个有变化,ik就会抓取新的词库
  2. 该http请求返回的是一行一个分词,用\n换行
  3. 可以将自动更新的热词放到要给UTF-8编码的.txt文件中,放到nginx或者http server下,当.txt文件修改时候,http server会在客户端请求该文件时自动返回Last-modify和ETag。可以从另一个业务系统提取相关词汇并更新.txt文件
  4. .txt文件也可以是.dic文件
  5. IK默认一分钟获取一次
  1. 接口
java 复制代码
@RestController
public class Test {

    @GetMapping("hotWord")
    public void hostWord(HttpServletResponse response){
        File file = new File("/my_word");
        FileInputStream fis = null;
        try {
            fis = new FileInputStream(file);
            byte[] bytes = new byte[(int) file.length()];
            response.setDateHeader("Last-modify",bytes.length);
            response.setDateHeader("ETag",bytes.length);
            response.setContentType("text/plain;charset=utf-8");
            int offset = 0;
            while (fis.read(bytes,offset,bytes.length - offset) != -1){}
            ServletOutputStream out = response.getOutputStream();
            out.write(bytes);
            out.flush();
            fis.close();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}

基于Mysql

  1. 修改IK源码,在initial方法中自定义从数据库读取词的方法。
  2. 打包替换ES中原先的IK
相关推荐
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ10 分钟前
idea 弹窗 delete remote branch origin/develop-deploy
java·elasticsearch·intellij-idea
Matrix7012 分钟前
HBase理论_HBase架构组件介绍
大数据·数据库·hbase
SeaTunnel41 分钟前
我手搓了个“自动生成标书”的开源大模型工具
大数据
小_太_阳2 小时前
hadoop_yarn详解
大数据·hadoop·yarn
Data-Miner3 小时前
大数据湖项目建设方案(100页WORD)
大数据·big data
XMYX-04 小时前
Python 操作 Elasticsearch 全指南:从连接到数据查询与处理
python·elasticsearch·jenkins
AI服务老曹4 小时前
不仅能够实现前后场的简单互动,而且能够实现人机结合,最终实现整个巡检流程的标准化的智慧园区开源了
大数据·人工智能·深度学习·物联网·开源
落落落sss5 小时前
MQ集群
java·服务器·开发语言·后端·elasticsearch·adb·ruby
管理大亨5 小时前
大数据微服务方案
大数据
脸ル粉嘟嘟6 小时前
大数据CDP集群中Impala&Hive常见使用语法
大数据·hive·hadoop