初识langchain的快速入门指南

LangChain 是一个强大的库,用于构建与语言模型(例如 GPT-3)集成的应用程序。它提供了丰富的工具和功能,可以帮助开发者快速构建和部署复杂的语言模型应用。以下是一个快速入门指南,帮助你初识 LangChain。

1. 安装 LangChain

首先,你需要安装 LangChain。可以通过 pip 安装:

```bash

pip install langchain

```

2. 初始化 LangChain

创建一个新的 Python 脚本或在 Jupyter Notebook 中使用以下代码初始化 LangChain:

```python

from langchain import LangChain

from langchain.llms import OpenAI

初始化 LangChain

lc = LangChain(api_key='your_openai_api_key')

初始化 OpenAI 语言模型

llm = OpenAI(api_key='your_openai_api_key')

```

确保替换 `'your_openai_api_key'` 为你的 OpenAI API 密钥。

3. 基本使用

你可以使用 LangChain 与语言模型进行简单的交互。以下是一个基本示例:

```python

prompt = "Tell me a story about a brave knight."

response = llm.generate(prompt)

print(response)

```

4. 使用链(Chains)

LangChain 中的"链"是将多个操作连接在一起的方式,允许你创建更复杂的应用程序逻辑。以下是一个简单的链示例:

```python

from langchain.chains import SimpleChain

创建一个简单的链

chain = SimpleChain(llm=llm)

定义链的步骤

steps = [

"What is the topic of the story?",

"Give a brief summary of the story."

]

运行链

chain_response = chain.run(steps)

print(chain_response)

```

5. 高级功能

LangChain 还支持更多高级功能,例如自定义预处理、后处理、集成其他 API 等。以下是一些高级用法的示例:

自定义处理

```python

def preprocess(input_text):

return input_text.lower()

def postprocess(output_text):

return output_text.capitalize()

chain = SimpleChain(llm=llm, preprocess=preprocess, postprocess=postprocess)

```

使用 Memory

LangChain 允许你在链中存储和检索状态,可以使用 Memory 类来实现这一功能:

```python

from langchain.memory import Memory

memory = Memory()

memory.store("topic", "knight")

def custom_step(context):

topic = memory.retrieve("topic")

return f"Tell me a detailed story about a {topic}."

chain = SimpleChain(llm=llm, steps=[custom_step])

response = chain.run()

print(response)

```

6. 部署应用

你可以将 LangChain 应用部署为一个 Web 服务,使用 Flask 或 FastAPI 等框架来实现。

以下是一个使用 Flask 部署 LangChain 应用的简单示例:

```python

from flask import Flask, request, jsonify

app = Flask(name)

@app.route('/generate', methods=['POST'])

def generate():

prompt = request.json.get('prompt')

response = llm.generate(prompt)

return jsonify({'response': response})

if name == 'main':

app.run(debug=True)

```

7. 学习资源

为了进一步学习 LangChain,你可以参考以下资源:

  • LangChain 官方文档\](https://langchain.readthedocs.io/)

  • OpenAI API 文档\](https://beta.openai.com/docs/)

相关推荐
遇码15 小时前
大语言模型开发框架——LangChain
人工智能·语言模型·langchain·llm·大模型开发·智能体
*星星之火*17 小时前
【GPT入门】第33 课 一文吃透 LangChain:chain 结合 with_fallbacks ([]) 的实战指南
gpt·langchain
碧海饮冰1 天前
LangChain/Eliza框架在使用场景上的异同,Eliza通过配置实现功能扩展的例子
langchain·eliza
牛奶3 天前
前端学AI:LangGraph学习-基础概念
前端·langchain·ai编程
桜吹雪3 天前
手把手教你在浏览器中处理流式传输(Event Stream/SSE)
前端·langchain·openai
herogus丶4 天前
【LLM】Elasticsearch作为向量库入门指南
elasticsearch·docker·langchain
处女座_三月5 天前
大模型架构记录13【hr agent】
人工智能·python·深度学习·langchain
SanMu三木5 天前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板
langchain·prompt
echola_mendes6 天前
LangChain 结构化输出:用 Pydantic + PydanticOutputParser 驯服 LLM 的“自由发挥”
服务器·前端·数据库·ai·langchain
素雪风华6 天前
大模型LLMs框架Langchain之工具Tools
langchain·大模型·tools·llms·langchain工具包