初识langchain的快速入门指南

LangChain 是一个强大的库,用于构建与语言模型(例如 GPT-3)集成的应用程序。它提供了丰富的工具和功能,可以帮助开发者快速构建和部署复杂的语言模型应用。以下是一个快速入门指南,帮助你初识 LangChain。

1. 安装 LangChain

首先,你需要安装 LangChain。可以通过 pip 安装:

```bash

pip install langchain

```

2. 初始化 LangChain

创建一个新的 Python 脚本或在 Jupyter Notebook 中使用以下代码初始化 LangChain:

```python

from langchain import LangChain

from langchain.llms import OpenAI

初始化 LangChain

lc = LangChain(api_key='your_openai_api_key')

初始化 OpenAI 语言模型

llm = OpenAI(api_key='your_openai_api_key')

```

确保替换 `'your_openai_api_key'` 为你的 OpenAI API 密钥。

3. 基本使用

你可以使用 LangChain 与语言模型进行简单的交互。以下是一个基本示例:

```python

prompt = "Tell me a story about a brave knight."

response = llm.generate(prompt)

print(response)

```

4. 使用链(Chains)

LangChain 中的"链"是将多个操作连接在一起的方式,允许你创建更复杂的应用程序逻辑。以下是一个简单的链示例:

```python

from langchain.chains import SimpleChain

创建一个简单的链

chain = SimpleChain(llm=llm)

定义链的步骤

steps = [

"What is the topic of the story?",

"Give a brief summary of the story."

]

运行链

chain_response = chain.run(steps)

print(chain_response)

```

5. 高级功能

LangChain 还支持更多高级功能,例如自定义预处理、后处理、集成其他 API 等。以下是一些高级用法的示例:

自定义处理

```python

def preprocess(input_text):

return input_text.lower()

def postprocess(output_text):

return output_text.capitalize()

chain = SimpleChain(llm=llm, preprocess=preprocess, postprocess=postprocess)

```

使用 Memory

LangChain 允许你在链中存储和检索状态,可以使用 Memory 类来实现这一功能:

```python

from langchain.memory import Memory

memory = Memory()

memory.store("topic", "knight")

def custom_step(context):

topic = memory.retrieve("topic")

return f"Tell me a detailed story about a {topic}."

chain = SimpleChain(llm=llm, steps=[custom_step])

response = chain.run()

print(response)

```

6. 部署应用

你可以将 LangChain 应用部署为一个 Web 服务,使用 Flask 或 FastAPI 等框架来实现。

以下是一个使用 Flask 部署 LangChain 应用的简单示例:

```python

from flask import Flask, request, jsonify

app = Flask(name)

@app.route('/generate', methods=['POST'])

def generate():

prompt = request.json.get('prompt')

response = llm.generate(prompt)

return jsonify({'response': response})

if name == 'main':

app.run(debug=True)

```

7. 学习资源

为了进一步学习 LangChain,你可以参考以下资源:

  • LangChain 官方文档\](https://langchain.readthedocs.io/)

  • OpenAI API 文档\](https://beta.openai.com/docs/)

相关推荐
无心水1 天前
【程序员AI入门:模型】19.开源模型工程化全攻略:从选型部署到高效集成,LangChain与One-API双剑合璧
人工智能·langchain·开源·ai入门·程序员ai开发入门·程序员的 ai 开发第一课·程序员ai入门
lxsy1 天前
langchain 接入国内搜索api——百度AI搜索
langchain·百度ai搜索
明明跟你说过1 天前
掌握 LangChain 文档处理核心:Document Loaders 与 Text Splitters 全解析
人工智能·语言模型·自然语言处理·langchain
ZhangJiQun&MXP2 天前
Top-p采样:解锁语言模型的创意之门
人工智能·深度学习·机器学习·语言模型·自然语言处理·langchain·概率论
珊珊而川3 天前
ChatPromptTemplate创建方式比较
服务器·langchain
fengchengwu20125 天前
langchain4j集成QWen、Redis聊天记忆持久化
redis·langchain·qwen·聊天记忆持久化
AI探子5 天前
【LangChain基础系列】深入全面掌握文本加载器
langchain
小饕7 天前
LangChain构建大模型应用之问答系统(五)
人工智能·python·langchain
yibuapi_com7 天前
Embedding 的数学特性与可视化解析
chatgpt·架构·langchain·embedding·claude·向量数据库·中转api
为啥全要学8 天前
vLLM部署Qwen2-7B模型推理
python·langchain·vllm