扣第212题“单词搜索 II”

在本篇文章中,我们将详细解读力扣第212题"单词搜索 II"。通过学习本篇文章,读者将掌握如何使用前缀树(Trie)和回溯法来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。

问题描述

力扣第212题"单词搜索 II"描述如下:

给定一个 m x n 二维字符网格 board 和一个单词字典 words,返回所有二维网格上的单词 。

单词必须按照字母顺序,通过相邻的单元连接形成,其中"相邻"单元是那些水平相邻或垂直相邻的单元。同一个单元格内的字母在一个单词中不允许被重复使用。

示例:

plaintext 复制代码
输入:board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
输出:["eat","oath"]

示例:

plaintext 复制代码
输入:board = [["a","b"],["c","d"]], words = ["abcb"]
输出:[]

解题思路

方法:前缀树(Trie)和回溯法
  1. 初步分析

    • 使用前缀树(Trie)来存储所有单词,方便快速查找和剪枝。
    • 使用回溯法在二维字符网格中搜索单词,结合前缀树进行优化。
  2. Trie 节点定义

    • 每个节点包含一个字典,用于存储子节点。
    • 每个节点包含一个布尔值,表示是否为一个单词的结尾。
  3. 操作实现

    • 构建前缀树,将所有单词插入前缀树。
    • 遍历二维字符网格的每个位置,使用回溯法搜索单词。
代码实现
python 复制代码
class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end_of_word = False
        self.word = None

class Trie:
    def __init__(self):
        self.root = TrieNode()
    
    def insert(self, word: str) -> None:
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end_of_word = True
        node.word = word

class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        def backtrack(node, row, col):
            letter = board[row][col]
            curr_node = node.children[letter]

            # check if we find a word
            if curr_node.is_end_of_word:
                result.add(curr_node.word)

            # mark the current cell as visited
            board[row][col] = '#'

            # explore neighbor cells in around-clock directions: up, right, down, left
            for (r, c) in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)]:
                if 0 <= r < len(board) and 0 <= c < len(board[0]) and board[r][c] in curr_node.children:
                    backtrack(curr_node, r, c)
            
            # end of exploration, restore the original value
            board[row][col] = letter

        # build the Trie
        trie = Trie()
        for word in words:
            trie.insert(word)
        
        # find words
        result = set()
        for row in range(len(board)):
            for col in range(len(board[0])):
                if board[row][col] in trie.root.children:
                    backtrack(trie.root, row, col)

        return list(result)

# 测试案例
board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]]
words = ["oath","pea","eat","rain"]
solution = Solution()
print(solution.findWords(board, words))  # 输出: ["eat","oath"]

board = [["a","b"],["c","d"]]
words = ["abcb"]
print(solution.findWords(board, words))  # 输出: []

复杂度分析

  • 时间复杂度:O(m * n * l),其中 m 和 n 分别是二维字符网格的行数和列数,l 是单词的平均长度。每个单元格最多访问一次,每次访问可能会进行多次递归调用。
  • 空间复杂度:O(k * l),其中 k 是单词的数量,l 是单词的平均长度。用于存储前缀树和递归调用栈。

模拟面试问答

问题 1:你能描述一下如何解决这个问题的思路吗?

回答:我们可以使用前缀树(Trie)来存储所有单词,并使用回溯法在二维字符网格中搜索单词。通过前缀树快速查找和剪枝,结合回溯法遍历二维字符网格的每个位置,查找符合条件的单词。

问题 2:为什么选择使用前缀树和回溯法来解决这个问题?

回答:前缀树可以高效地存储和查找字符串前缀,适用于实现字典和前缀匹配的功能。回溯法是一种递归算法,适用于在二维字符网格中搜索路径,通过结合前缀树,可以优化搜索过程,减少不必要的计算。

问题 3:你的算法的时间复杂度和空间复杂度是多少?

回答:算法的时间复杂度为 O(m * n * l),其中 m 和 n 分别是二维字符网格的行数和列数,l 是单词的平均长度。每个单元格最多访问一次,每次访问可能会进行多次递归调用。空间复杂度为 O(k * l),其中 k 是单词的数量,l 是单词的平均长度。用于存储前缀树和递归调用栈。

问题 4:在代码中如何处理边界情况?

回答:对于空的二维字符网格和空的单词列表,可以直接返回空数组。对于单词列表中的重复单词,可以在结果中使用集合去重。通过这种方式,可以处理边界情况。

问题 5:你能解释一下前缀树和回溯法的工作原理吗?

回答:前缀树是一种多叉树结构,用于高效地存储和查找字符串前缀。回溯法是一种递归算法,通过递归遍历所有可能的路径。在这个问题中,前缀树用于存储单词,回溯法用于在二维字符网格中搜索单词,通过前缀树快速查找和剪枝,提高搜索效率。

问题 6:在代码中如何确保返回的结果是正确的?

回答:通过前缀树存储所有单词,在搜索时使用回溯法结合前缀树进行优化,确保返回的结果是正确的。可以通过测试案例验证结果。

问题 7:你能举例说明在面试中如何回答优化问题吗?

回答:在面试中,如果面试官问到如何优化算法,我会首先分析当前算法的瓶颈,如时间复杂度和空间复杂度,然后提出优化方案。例如,可以通过减少不必要的操作和优化数据结构来提高性能。解释其原理和优势,最后提供优化后的代码实现。

问题 8:如何验证代码的正确性?

回答:通过运行代码并查看结果,验证返回的单词列表是否正确。可以使用多组测试数据,包括正常情况和边界情况,确保代码在各种情况下都能正确运行。例如,可以在测试数据中包含多个单词和不同的二维字符网格,确保代码结果正确。

问题 9:你能解释一下解决单词搜索问题的重要性吗?

回答:解决单词搜索问题在字符串处理和搜索算法中具有重要意义。通过学习和应用前缀树和回溯法,可以提高处理字符串和前缀匹配问题的能力。在实际应用中,单词搜索问题广泛用于文本处理、搜索引擎和自然语言处理等领域。

问题 10:在处理大数据集时,算法的性能如何?

回答:算法的性能取决于二维字符网格的大小和单词的数量。在处理大数据集时,通过优化前缀树的实现和减少不必要的操作,可以显著提高算法的性能。例如,通过优化递归调用和减少不必要的节点遍历,可以减少时间和空间复杂度,从而提高算法的效率。

总结

本文详细解读了力扣第212题"单词搜索 II",通过使用前缀树和回溯法的方法高效地解决了这一问题,并提供了详细的解释和模拟面试问答。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

相关推荐
千澜空5 分钟前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
斯凯利.瑞恩12 分钟前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
幸运超级加倍~26 分钟前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan2019031334 分钟前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法35 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR36 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
linsa_pursuer37 分钟前
快乐数算法
算法·leetcode·职场和发展
小芒果_0138 分钟前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
qq_4340859040 分钟前
Day 52 || 739. 每日温度 、 496.下一个更大元素 I 、503.下一个更大元素II
算法
Beau_Will40 分钟前
ZISUOJ 2024算法基础公选课练习一(2)
算法