hive on spark配置方案详解

一、安装hive-on-spark客户端

1、下载已编译好的spark安装包:sparkengine-2.3.4.tgz。

2、将该spark客户端,放到/usr/hdp/3.1.0.0-78/hive目录下,命名为sparkengine。只需要部署在hiveserver2节点即可。

3、配置conf/spark-default.conf和spark-env.sh

conf/spark-env.sh中增加:

export HADOOP_CONF_DIR=/usr/hdp/3.1.0.0-78/hadoop/conf

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

conf/spark-defaults.conf中增加:

spark.driver.extraJavaOptions -Dhdp.version=3.1.0.0-78

spark.yarn.am.extraJavaOptions -Dhdp.version=3.1.0.0-78

增加一个conf/java-opts文件:

echo "-Dhdp.version=3.1.0.0-78" >conf/java-opts

二、配置yarn的资源调度器

yarn.resourcemanager.scheduler.class=org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler

三、配置hive:只需要部署在hiveserver2节点上即可。

1、在/usr/hdp/3.1.0.0-78/hive/lib中添加spark2的依赖包

sudo cp sparkengine-2.3.4/jars/scala-library*.jar hive/lib/

sudo cp sparkengine-2.3.4/jars/spark-core*.jar hive/lib/

sudo cp sparkengine-2.3.4/jars/spark-network-common*.jar hive/lib/

2、修改hive配置文件

(1)、在高级hive-env中配置spark-home:

export SPARK_HOME=${HIVE_HOME}/sparkengine-2.3.4

如果不设置SPARK_HOME,会使用HDP默认的SparkSubmit命令来提交job。

##INFO [HiveServer2-Background-Pool: Thread-4928]: client.SparkClientImpl (😦)) - No spark.home provided, calling SparkSubmit directly.

(2)、在【自定义hive-site】中,增加自定义属性:

##hive.execution.engine=spark ##如果默认使用spark引擎,可修改该属性。

spark.master=yarn

spark.driver.memory=4g

spark.executor.cores=2

spark.executor.memory=2g

spark.executor.instances=2

spark.eventLog.enabled=true

spark.eventLog.dir=hdfs://d***:8020/hive-spark

spark.network.timeout=300

spark.serializer=org.apache.spark.serializer.KryoSerializer

spark.driver.extraJavaOptions=-Dhdp.version=3.1.0.0-78 ##如果不配置,spark executor无法启动。

spark.yarn.am.extraJavaOptions=-Dhdp.version=3.1.0.0-78

spark.yarn.jars=hdfs://demo2:8020/spark2-jars/*

spark.executor.extraJavaOptions=-XX:+UseG1GC -XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintAdaptiveSizePolicy -XX:+UnlockDiagnosticVMOptions -XX:+G1SummarizeConcMark -XX:InitiatingHeapOccupancyPercent=35

spark.dynamicAllocation.enabled=false ##资源动态分配

spark.dynamicAllocation.initialExecutors=2

spark.shuffle.service.enabled=false ###如果设置为true,需要yarn中配置相关参数。

spark.driver.memoryOverhead=400

spark.executor.memoryOverhead=400

set hive.merge.sparkfiles=true;--合并小文件

3、上传spark本身的包至hdfs:

hdfs dfs -mkdir /hive-spark ##spark.eventLog.dir

hdfs dfs -mkdir /spark2-jars ##spark.yarn.jars

hdfs dfs -put /usr/hdp/3.1.0.0-78/hive/sparkengine-2.3.4/jars/* /spark2-jars/

4、重启hive

五、测试hive on spark是否生效

hive --hiveconf hive.execution.engine=spark

set hive.execution.engine=spark;

登录hive:

beeline -u "jdbc:hive2://d***2:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2" --hiveconf hive.execution.engine=spark -n @@@ -p ***@123

使用稍微复杂点的sql进行测试:

select oper_type,count(distinct user_id),count(distinct item_id) from oper_test group by oper_type;

查看yarn里有无application启动。beeline中执行的sql有无查询结果。

相关推荐
小湘西2 小时前
在 Hive 中NULL的理解
数据仓库·hive·hadoop
牛奶咖啡132 小时前
zabbix实现监控Hadoop、Docker、SSL证书过期时间应用的保姆级实操流程
hadoop·zabbix·docker-ce引擎安装·监控docker容器·监控ssl证书的过期时间·监控hadoop·安装配置agent2
Hello.Reader6 小时前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
小鹿学程序9 小时前
搭建hadoop集群
大数据·hadoop·分布式
John Song11 小时前
用zookpeer搭建Hadoop的HA集群,组件启动的启动顺序是什么?
大数据·hadoop·debian
jiuweiC21 小时前
hive常用命令
hive
hweiyu001 天前
Hive 技术深度解析与 P7 数据分析架构师多行业全场景实战课程合集(视频教程)
hive·数据分析
梦里不知身是客111 天前
sparkSQL读取数据的方式
spark
少废话h1 天前
Spark 中数据读取方式详解:SparkSQL(DataFrame)与 SparkCore(RDD)方法对比及实践
大数据·sql·spark
大千AI助手1 天前
分布式奇异值分解(SVD)详解
人工智能·分布式·spark·奇异值分解·svd·矩阵分解·分布式svd