独家首发 | Matlab实现SVM-Transformer多变量回归预测

独家首发 | Matlab实现SVM-Transformer多变量回归预测

目录

效果一览




基本介绍

1.Matlab实现SVM-Transformer多变量回归预测,SVM递归特征消除+Transformer多输入单输出回归预测;

2.运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

程序设计

  • 完整程序和数据下载私信博主回复独家首发 | Matlab实现SVM-Transformer多变量回归预测
clike 复制代码
%%  输出选择特征的对应序号
disp('经过特征选择后,保留特征的序号为:')
disp(save_index)

%%  特征选择后的数据集
p_train = p_train(:, save_index);
p_test  = p_test (:, save_index);

%%  矩阵转置适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
vp_train =  double(reshape(p_train, k, 1, 1, M));
vp_test  =  double(reshape(p_test , k, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    lp_train{i, 1} = vp_train(:, :, 1, i);
end

for i = 1 : N
    lp_test{i, 1}  = vp_test( :, :, 1, i);
end

%%  创建模型
%网络搭建
numChannels = k;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
机器学习之心44 分钟前
MATLAB灰狼优化算法(GWO)改进物理信息神经网络(PINN)光伏功率预测
神经网络·算法·matlab·物理信息神经网络
ghie909011 小时前
基于MATLAB的TLBO算法优化实现与改进
开发语言·算法·matlab
wuk99811 小时前
VSC优化算法MATLAB实现
开发语言·算法·matlab
2401_8633186313 小时前
机动车防撞击系统设计
matlab
高洁0117 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
jllllyuz17 小时前
MATLAB实现蜻蜓优化算法
开发语言·算法·matlab
yyy(十一月限定版)18 小时前
初始matlab
开发语言·matlab
listhi52018 小时前
基于MATLAB的支持向量机(SVM)医学图像分割方法
开发语言·matlab
崇山峻岭之间20 小时前
Matlab学习记录30
开发语言·学习·matlab
民乐团扒谱机20 小时前
【微实验】MATLAB 仿真实战:多普勒效应 —— 洒水车音乐的音调变化仿真
开发语言·matlab·多普勒效应·多普勒频移