【AI原理解析】—k-means原理

目录

步骤

注意事项

优点

缺点


步骤

  1. 初始化
    • 选择 k 个初始质心(通常通过随机选择数据集中的 k 个点作为初始质心)。
  2. 迭代过程
    • 分配数据点到最近的质心
      • 对于数据集中的每个数据点,计算它与 k 个质心之间的距离(例如,使用欧几里得距离)。
      • 将数据点分配给距离其最近的质心所对应的聚类。
    • 重新计算质心
      • 对于每个聚类,计算该聚类中所有数据点的均值(平均值),并将这个均值设为新的质心。
    • 检查收敛
      • 重复上述两个步骤,直到达到某个停止条件(例如,质心的变化小于某个阈值,或者达到预设的迭代次数)。
  3. 结果输出
    • 最终的聚类结果和每个聚类的质心。

效果评估方法

  • SSE(Sum of Squared Errors):计算每个样本与其所属簇中心点的距离的平方和。SSE值越小,表示聚类效果越好。
  • 轮廓系数(Silhouette Coefficient):综合考虑了样本之间的紧密度和分离度。轮廓系数越接近于1,表示聚类效果越好。

注意事项

  • k 的选择 :k 的值需要预先设定,而且不同的 k 值可能会导致不同的聚类结果。因此,k 的选择通常基于领域知识、数据的可视化或一些启发式方法(如肘部法则)。
    • 手肘法:通过绘制不同k值下的代价函数曲线,选择曲线趋于平稳前的拐点作为最佳k值。
    • Gap Statistic方法:通过计算真实样本和随机样本在不同k值下的损失函数差值(Gap值),选择使Gap值最大的k值作为最佳k值。
  • 初始质心的选择:随机选择初始质心可能会导致不同的聚类结果。为了解决这个问题,可以使用一些更复杂的初始化方法,如 K-means++。
  • 对异常值的敏感性:由于质心是基于所有数据点的均值计算的,因此异常值可能会对聚类结果产生较大影响。
  • 空聚类:在某些情况下,可能会出现某些聚类中没有数据点的情况。这通常是由于初始质心的选择不当或 k 值设置得过大导致的。
  • 迭代次数和收敛条件:需要设置适当的迭代次数和收敛条件来确保算法能够稳定地收敛。
  • 数据的预处理:在应用 k-means 算法之前,通常需要对数据进行一些预处理操作,如特征缩放、标准化或归一化,以确保不同的特征在聚类过程中具有相同的权重。

优点

  • 简单易懂,易于实现。
  • 在很多情况下都能得到较好的聚类结果。

缺点

  • 需要预先设定 k 的值。
  • 对初始质心的选择敏感。
  • 对异常值敏感。
  • 可能会陷入局部最优解。
相关推荐
小牛头#4 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
杨小扩5 小时前
第4章:实战项目一 打造你的第一个AI知识库问答机器人 (RAG)
人工智能·机器人
whaosoft-1435 小时前
51c~目标检测~合集4
人工智能
雪兽软件5 小时前
2025 年网络安全与人工智能发展趋势
人工智能·安全·web安全
元宇宙时间6 小时前
全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
大数据·人工智能·去中心化·区块链
小黄人20256 小时前
自动驾驶安全技术的演进与NVIDIA的创新实践
人工智能·安全·自动驾驶
ZStack开发者社区7 小时前
首批 | 云轴科技ZStack加入施耐德电气技术本地化创新生态
人工智能·科技·云计算
X Y O8 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
kngines8 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
唯创知音8 小时前
玩具语音方案选型决策OTP vs Flash 的成本功耗与灵活性
人工智能·语音识别