【AI原理解析】—k-means原理

目录

步骤

注意事项

优点

缺点


步骤

  1. 初始化
    • 选择 k 个初始质心(通常通过随机选择数据集中的 k 个点作为初始质心)。
  2. 迭代过程
    • 分配数据点到最近的质心
      • 对于数据集中的每个数据点,计算它与 k 个质心之间的距离(例如,使用欧几里得距离)。
      • 将数据点分配给距离其最近的质心所对应的聚类。
    • 重新计算质心
      • 对于每个聚类,计算该聚类中所有数据点的均值(平均值),并将这个均值设为新的质心。
    • 检查收敛
      • 重复上述两个步骤,直到达到某个停止条件(例如,质心的变化小于某个阈值,或者达到预设的迭代次数)。
  3. 结果输出
    • 最终的聚类结果和每个聚类的质心。

效果评估方法

  • SSE(Sum of Squared Errors):计算每个样本与其所属簇中心点的距离的平方和。SSE值越小,表示聚类效果越好。
  • 轮廓系数(Silhouette Coefficient):综合考虑了样本之间的紧密度和分离度。轮廓系数越接近于1,表示聚类效果越好。

注意事项

  • k 的选择 :k 的值需要预先设定,而且不同的 k 值可能会导致不同的聚类结果。因此,k 的选择通常基于领域知识、数据的可视化或一些启发式方法(如肘部法则)。
    • 手肘法:通过绘制不同k值下的代价函数曲线,选择曲线趋于平稳前的拐点作为最佳k值。
    • Gap Statistic方法:通过计算真实样本和随机样本在不同k值下的损失函数差值(Gap值),选择使Gap值最大的k值作为最佳k值。
  • 初始质心的选择:随机选择初始质心可能会导致不同的聚类结果。为了解决这个问题,可以使用一些更复杂的初始化方法,如 K-means++。
  • 对异常值的敏感性:由于质心是基于所有数据点的均值计算的,因此异常值可能会对聚类结果产生较大影响。
  • 空聚类:在某些情况下,可能会出现某些聚类中没有数据点的情况。这通常是由于初始质心的选择不当或 k 值设置得过大导致的。
  • 迭代次数和收敛条件:需要设置适当的迭代次数和收敛条件来确保算法能够稳定地收敛。
  • 数据的预处理:在应用 k-means 算法之前,通常需要对数据进行一些预处理操作,如特征缩放、标准化或归一化,以确保不同的特征在聚类过程中具有相同的权重。

优点

  • 简单易懂,易于实现。
  • 在很多情况下都能得到较好的聚类结果。

缺点

  • 需要预先设定 k 的值。
  • 对初始质心的选择敏感。
  • 对异常值敏感。
  • 可能会陷入局部最优解。
相关推荐
天涯海风18 分钟前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs1 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java2 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV2 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����3 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
一车小面包4 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
小猿姐4 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生4 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习