【AI原理解析】—k-means原理

目录

步骤

注意事项

优点

缺点


步骤

  1. 初始化
    • 选择 k 个初始质心(通常通过随机选择数据集中的 k 个点作为初始质心)。
  2. 迭代过程
    • 分配数据点到最近的质心
      • 对于数据集中的每个数据点,计算它与 k 个质心之间的距离(例如,使用欧几里得距离)。
      • 将数据点分配给距离其最近的质心所对应的聚类。
    • 重新计算质心
      • 对于每个聚类,计算该聚类中所有数据点的均值(平均值),并将这个均值设为新的质心。
    • 检查收敛
      • 重复上述两个步骤,直到达到某个停止条件(例如,质心的变化小于某个阈值,或者达到预设的迭代次数)。
  3. 结果输出
    • 最终的聚类结果和每个聚类的质心。

效果评估方法

  • SSE(Sum of Squared Errors):计算每个样本与其所属簇中心点的距离的平方和。SSE值越小,表示聚类效果越好。
  • 轮廓系数(Silhouette Coefficient):综合考虑了样本之间的紧密度和分离度。轮廓系数越接近于1,表示聚类效果越好。

注意事项

  • k 的选择 :k 的值需要预先设定,而且不同的 k 值可能会导致不同的聚类结果。因此,k 的选择通常基于领域知识、数据的可视化或一些启发式方法(如肘部法则)。
    • 手肘法:通过绘制不同k值下的代价函数曲线,选择曲线趋于平稳前的拐点作为最佳k值。
    • Gap Statistic方法:通过计算真实样本和随机样本在不同k值下的损失函数差值(Gap值),选择使Gap值最大的k值作为最佳k值。
  • 初始质心的选择:随机选择初始质心可能会导致不同的聚类结果。为了解决这个问题,可以使用一些更复杂的初始化方法,如 K-means++。
  • 对异常值的敏感性:由于质心是基于所有数据点的均值计算的,因此异常值可能会对聚类结果产生较大影响。
  • 空聚类:在某些情况下,可能会出现某些聚类中没有数据点的情况。这通常是由于初始质心的选择不当或 k 值设置得过大导致的。
  • 迭代次数和收敛条件:需要设置适当的迭代次数和收敛条件来确保算法能够稳定地收敛。
  • 数据的预处理:在应用 k-means 算法之前,通常需要对数据进行一些预处理操作,如特征缩放、标准化或归一化,以确保不同的特征在聚类过程中具有相同的权重。

优点

  • 简单易懂,易于实现。
  • 在很多情况下都能得到较好的聚类结果。

缺点

  • 需要预先设定 k 的值。
  • 对初始质心的选择敏感。
  • 对异常值敏感。
  • 可能会陷入局部最优解。
相关推荐
IT_陈寒11 分钟前
Vue3性能提升30%的秘密:5个90%开发者不知道的组合式API优化技巧
前端·人工智能·后端
文火冰糖的硅基工坊24 分钟前
[人工智能-大模型-69]:模型层技术 - 计算机处理问题的几大分支:数值型性问题、非数值型问题?
算法·决策树·机器学习
OG one.Z1 小时前
05_逻辑回归
算法·机器学习·逻辑回归
on_pluto_2 小时前
【基础复习1】ROC 与 AUC:逻辑回归二分类例子
人工智能·机器学习·职场和发展·学习方法·1024程序员节
渲吧云渲染5 小时前
SaaS模式重构工业软件竞争规则,助力中小企业快速实现数字化转型
大数据·人工智能·sass
算家云5 小时前
DeepSeek-OCR本地部署教程:DeepSeek突破性开创上下文光学压缩,10倍效率重构文本处理范式
人工智能·计算机视觉·算家云·模型部署教程·镜像社区·deepseek-ocr
AgeClub5 小时前
1.2亿老人需助听器:本土品牌如何以AI破局,重构巨头垄断市场?
人工智能
PPIO派欧云7 小时前
PPIO上线Qwen-VL-8B/30B、GLM-4.5-Air等多款中小尺寸模型
人工智能
chenchihwen8 小时前
AI代码开发宝库系列:FAISS向量数据库
数据库·人工智能·python·faiss·1024程序员节