-
Deep Crossing模型(微软,搜索引擎,广告推荐)
前置知识:推荐算法学习笔记1.3:传统推荐算法-逻辑回归算法,推荐算法学习笔记1.4:传统推荐算法-自动特征的交叉解决方案:FM→FFM
本文含残差块反向传播梯度推导 (最后附录)背景概述:用户搜索关键词 → 返回搜索结果以及相关广告。
导出问题:如何提高广告的点击率?
输入:混合类型(类别型,数值型)特征。
输出:点击概率。

细化问题:
①如何解决类别型特征进行one-hot或multi-hot编码后的稀疏问题?
②如何进行自动特征组合?
③如何将得到理想的输出?
解决方案:

①对类别型特征进行嵌入表示(引入了Embedding层)。
②通过Stacking层将多个特征进行堆叠(concatenate),利用神经网络的非线性特征组合能力进行自动特征组合(Multiple Residual Units层, 残差结构)。
③通过Scoring层输出点击概率(分类层)。
附录:
附1:残差结构

残差结构通过让模型拟合残差而不是映射从而减少网络过拟合的现象发生。即前向传播如下
h ( i + 1 ) = h ( i ) + σ i + 1 ( W i + 1 h ( i ) + b i + 1 ) \mathbf{h}^{(i+1)} = \mathbf{h}^{(i)}+\sigma^{i+1}(\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1}) h(i+1)=h(i)+σi+1(Wi+1h(i)+bi+1)
其中假设 h ( i ) = σ i ( W i h ( i − 1 ) + b i ) \mathbf{h}^{(i)} = \sigma^{i}(\mathbf{W}^{i}\mathbf{h}^{(i-1)}+b^{i}) h(i)=σi(Wih(i−1)+bi),则 W i \mathbf{W}^i Wi的反向传播如下
∂ L o s s ∂ W i = ∂ L o s s ∂ h i + 1 ( ∂ h i ∂ W i + ∂ σ i + 1 ∂ ( W i + 1 h ( i ) + b i + 1 ) ( W i + 1 ) T ∂ h i ∂ W i ) = ∂ L o s s ∂ h i + 1 ∂ h i ∂ W i + ∂ L o s s ∂ h i + 1 ∂ σ i + 1 ∂ ( W i + 1 h ( i ) + b i + 1 ) ( W i + 1 ) T ∂ h i ∂ W i \frac{\partial Loss}{\partial \mathbf{W}^i}= \frac{\partial Loss}{\partial \mathbf{h}^{i+1}} (\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}+\frac{\partial \sigma^{i+1}}{\partial (\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1})}(\mathbf{W}^{i+1})^T\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}) \\ =\frac{\partial Loss}{\partial \mathbf{h}^{i+1}} \frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}+\frac{\partial Loss}{\partial \mathbf{h}^{i+1}} \frac{\partial \sigma^{i+1}}{\partial (\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1})}(\mathbf{W}^{i+1})^T\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i} ∂Wi∂Loss=∂hi+1∂Loss(∂Wi∂hi+∂(Wi+1h(i)+bi+1)∂σi+1(Wi+1)T∂Wi∂hi)=∂hi+1∂Loss∂Wi∂hi+∂hi+1∂Loss∂(Wi+1h(i)+bi+1)∂σi+1(Wi+1)T∂Wi∂hi
从反向传播过程可以看出 W i \mathbf{W}^i Wi的梯度中第一项不会引入后续的参数矩阵 W i + 1 \mathbf{W}^{i+1} Wi+1,所以在一定程度避免了梯度消失的产生。
推荐算法学习笔记2.2:基于深度学习的推荐算法-基于特征交叉组合+逻辑回归思路的深度推荐算法-Deep Crossing模型
YmgmY2024-07-02 13:31
相关推荐
2301_764441338 小时前
Aella Science Dataset Explorer 部署教程笔记Bathwind-w8 小时前
FOC开发工具学习Coder_Boy_8 小时前
DDD从0到企业级:迭代式学习 (共17章)之 四派大鑫wink9 小时前
【Java 学习日记】开篇:以日记为舟,渡 Java 进阶之海deng-c-f9 小时前
Linux C/C++ 学习日记(49):线程池HyperAI超神经9 小时前
【vLLM 学习】Prithvi Geospatial Mae永远都不秃头的程序员(互关)10 小时前
大模型Agent落地实战:从核心原理到工业级任务规划器开发TL滕11 小时前
从0开始学算法——第十八天(分治算法)算法与双吉汉堡11 小时前
【短链接项目笔记】Day2 用户注册思成不止于此11 小时前
【MySQL 零基础入门】MySQL 约束精讲(一):基础约束篇