推荐算法学习笔记2.2:基于深度学习的推荐算法-基于特征交叉组合+逻辑回归思路的深度推荐算法-Deep Crossing模型

  • Deep Crossing模型(微软,搜索引擎,广告推荐)

    前置知识:推荐算法学习笔记1.3:传统推荐算法-逻辑回归算法推荐算法学习笔记1.4:传统推荐算法-自动特征的交叉解决方案:FM→FFM
    本文含残差块反向传播梯度推导 (最后附录)

    背景概述:用户搜索关键词 → 返回搜索结果以及相关广告。

    导出问题:如何提高广告的点击率?

    输入:混合类型(类别型,数值型)特征。

    输出:点击概率。

    细化问题:

    ①如何解决类别型特征进行one-hot或multi-hot编码后的稀疏问题?

    ②如何进行自动特征组合?

    ③如何将得到理想的输出?

    解决方案:

    ①对类别型特征进行嵌入表示(引入了Embedding层)。

    ②通过Stacking层将多个特征进行堆叠(concatenate),利用神经网络的非线性特征组合能力进行自动特征组合(Multiple Residual Units层, 残差结构)。

    ③通过Scoring层输出点击概率(分类层)。

    附录:

    附1:残差结构

    残差结构通过让模型拟合残差而不是映射从而减少网络过拟合的现象发生。即前向传播如下

    h ( i + 1 ) = h ( i ) + σ i + 1 ( W i + 1 h ( i ) + b i + 1 ) \mathbf{h}^{(i+1)} = \mathbf{h}^{(i)}+\sigma^{i+1}(\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1}) h(i+1)=h(i)+σi+1(Wi+1h(i)+bi+1)

    其中假设 h ( i ) = σ i ( W i h ( i − 1 ) + b i ) \mathbf{h}^{(i)} = \sigma^{i}(\mathbf{W}^{i}\mathbf{h}^{(i-1)}+b^{i}) h(i)=σi(Wih(i−1)+bi),则 W i \mathbf{W}^i Wi的反向传播如下

    ∂ L o s s ∂ W i = ∂ L o s s ∂ h i + 1 ( ∂ h i ∂ W i + ∂ σ i + 1 ∂ ( W i + 1 h ( i ) + b i + 1 ) ( W i + 1 ) T ∂ h i ∂ W i ) = ∂ L o s s ∂ h i + 1 ∂ h i ∂ W i + ∂ L o s s ∂ h i + 1 ∂ σ i + 1 ∂ ( W i + 1 h ( i ) + b i + 1 ) ( W i + 1 ) T ∂ h i ∂ W i \frac{\partial Loss}{\partial \mathbf{W}^i}= \frac{\partial Loss}{\partial \mathbf{h}^{i+1}} (\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}+\frac{\partial \sigma^{i+1}}{\partial (\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1})}(\mathbf{W}^{i+1})^T\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}) \\ =\frac{\partial Loss}{\partial \mathbf{h}^{i+1}} \frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i}+\frac{\partial Loss}{\partial \mathbf{h}^{i+1}} \frac{\partial \sigma^{i+1}}{\partial (\mathbf{W}^{i+1}\mathbf{h}^{(i)}+b^{i+1})}(\mathbf{W}^{i+1})^T\frac{\partial \mathbf{h}^{i}}{\partial \mathbf{W}^i} ∂Wi∂Loss=∂hi+1∂Loss(∂Wi∂hi+∂(Wi+1h(i)+bi+1)∂σi+1(Wi+1)T∂Wi∂hi)=∂hi+1∂Loss∂Wi∂hi+∂hi+1∂Loss∂(Wi+1h(i)+bi+1)∂σi+1(Wi+1)T∂Wi∂hi

    从反向传播过程可以看出 W i \mathbf{W}^i Wi的梯度中第一项不会引入后续的参数矩阵 W i + 1 \mathbf{W}^{i+1} Wi+1,所以在一定程度避免了梯度消失的产生。

相关推荐
一只侯子1 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
烤麻辣烫2 小时前
黑马程序员大事件后端概览(表现效果升级版)
java·开发语言·学习·spring·intellij-idea
烤麻辣烫4 小时前
黑马程序员苍穹外卖(新手)DAY6
java·开发语言·学习·spring·intellij-idea
whale fall4 小时前
【剑雅14】笔记
笔记
星空的资源小屋5 小时前
跨平台下载神器ArrowDL,一网打尽所有资源
javascript·笔记·django
Xudde.5 小时前
Quick2靶机渗透
笔记·学习·安全·web安全·php
AA陈超6 小时前
Git常用命令大全及使用指南
笔记·git·学习
麦麦在写代码6 小时前
前端学习5
前端·学习
愚戏师7 小时前
Python3 Socket 网络编程复习笔记
网络·笔记
降临-max7 小时前
JavaSE---网络编程
java·开发语言·网络·笔记·学习