BERT--学习

一、Transformer

Transformer,是由编码块和解码块两部分组成,其中编码块由多个编码器组成,解码块同样也是由多个解码块组成。

编码器:自注意力 + 全连接

  • **多头自注意力:**Q、K、V
  • 公式:

解码块:自注意力 + 编码 - 解码自注意力 +全连接

  • 多头自注意力
  • **编码---解码自注意力:**Q上个解码器的输出

K、V最后一个编码器输出

二、BERT

  • **bert,**是由Transformer的多个编码器组成。
  • **Base :**12层编码器,每个编码器有12个多头,隐藏维度为768。
  • Large: 24层编码器,每个编码器16个头,隐层维度为1024
  • bert结构 :
python 复制代码
import torch
class MultiHeadAttention(nn.Module):
    def__init__(self,hidden_size,head_num):
        super().__init__()
        self.head_size = hidden_size / head_num
        self.query = nn.Linear(hidden_size, hidden_size)
        self.key = nn.Linear(hidden_size, hidden_size)
        self.value = nn.Linear(hidden_size, hidden_size)
    def transpose_dim(self,x):
        x_new_shape = x.size()[:-1]+(self.head_num, head_size)
        x = x.view(*x_new_shape)
        return x.permute(0,2,1,3)

    def forward(self,x,attention_mask):
        Quary_layer = self.query(x)
        Key_layer = self.key(x)
        Value_layer = self.value(x)

        '''
        B = Quary_layer.shape[0]
        N = Quary_layer.shape[1]
        multi_quary = Quary_layer.view(B,N,self.head_num,self.head_size).transpose(1,2)
        '''
        
        multi_quary =self.transpose_dim(Quary_layer)
        multi_key =self.transpose_dim(Key_layer)
        multi_value =self.transpose_dim(Value_layer)

        attention_scores = torch.matmul(multi_quary, multi_key.transpose(-1,-2))
        attention_scores = attention_scores / math.sqrt(self.head_size)

        attention_probs = nn.Softmax(dim=-1)(attention_scores) 
        context_layer = torch.matmul(attention_probs,values_layer)
        context_layer = context_layer.permute(0,2,1,3).contiguous()
        context_layer_shape =  context_layer.size()[:-2]+(self.hidden_size)
        context_layer = cotext_layer.view(*context_layer_shape 

        return context_layer
        
        
相关推荐
songyuc1 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg12589631 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪
doubao362 小时前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper3 小时前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo
Danceful_YJ5 小时前
31.注意力评分函数
pytorch·python·深度学习
机器之心5 小时前
李飞飞最新长文:AI的下一个十年——构建真正具备空间智能的机器
人工智能·openai
机器之心5 小时前
豆包编程模型来了,我们用四个关卡考了考它!
人工智能·openai
阿里云大数据AI技术5 小时前
让 ETL 更懂语义:DataWorks 支持数据集成 AI 辅助处理能力
人工智能·阿里云·dataworks·ai辅助
hoiii1875 小时前
基于交替方向乘子法(ADMM)的RPCA MATLAB实现
人工智能·算法·matlab
Elastic 中国社区官方博客6 小时前
Elasticsearch:如何为 Elastic Stack 部署 E5 模型 - 下载及隔离环境
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索