BERT--学习

一、Transformer

Transformer,是由编码块和解码块两部分组成,其中编码块由多个编码器组成,解码块同样也是由多个解码块组成。

编码器:自注意力 + 全连接

  • **多头自注意力:**Q、K、V
  • 公式:

解码块:自注意力 + 编码 - 解码自注意力 +全连接

  • 多头自注意力
  • **编码---解码自注意力:**Q上个解码器的输出

K、V最后一个编码器输出

二、BERT

  • **bert,**是由Transformer的多个编码器组成。
  • **Base :**12层编码器,每个编码器有12个多头,隐藏维度为768。
  • Large: 24层编码器,每个编码器16个头,隐层维度为1024
  • bert结构 :
python 复制代码
import torch
class MultiHeadAttention(nn.Module):
    def__init__(self,hidden_size,head_num):
        super().__init__()
        self.head_size = hidden_size / head_num
        self.query = nn.Linear(hidden_size, hidden_size)
        self.key = nn.Linear(hidden_size, hidden_size)
        self.value = nn.Linear(hidden_size, hidden_size)
    def transpose_dim(self,x):
        x_new_shape = x.size()[:-1]+(self.head_num, head_size)
        x = x.view(*x_new_shape)
        return x.permute(0,2,1,3)

    def forward(self,x,attention_mask):
        Quary_layer = self.query(x)
        Key_layer = self.key(x)
        Value_layer = self.value(x)

        '''
        B = Quary_layer.shape[0]
        N = Quary_layer.shape[1]
        multi_quary = Quary_layer.view(B,N,self.head_num,self.head_size).transpose(1,2)
        '''
        
        multi_quary =self.transpose_dim(Quary_layer)
        multi_key =self.transpose_dim(Key_layer)
        multi_value =self.transpose_dim(Value_layer)

        attention_scores = torch.matmul(multi_quary, multi_key.transpose(-1,-2))
        attention_scores = attention_scores / math.sqrt(self.head_size)

        attention_probs = nn.Softmax(dim=-1)(attention_scores) 
        context_layer = torch.matmul(attention_probs,values_layer)
        context_layer = context_layer.permute(0,2,1,3).contiguous()
        context_layer_shape =  context_layer.size()[:-2]+(self.hidden_size)
        context_layer = cotext_layer.view(*context_layer_shape 

        return context_layer
        
        
相关推荐
golang学习记8 分钟前
Anthropic 发布轻量级模型Claude Haiku 4.5:更快,更便宜,更聪明
人工智能
bin915320 分钟前
当AI开始‘映射‘用户数据:初级Python开发者的创意‘高阶函数‘如何避免被‘化简‘?—— 老码农的函数式幽默
开发语言·人工智能·python·工具·ai工具
CoovallyAIHub36 分钟前
Mamba-3震撼登场!Transformer最强挑战者再进化,已进入ICLR 2026盲审
深度学习·算法·计算机视觉
飞哥数智坊1 小时前
一文看懂 Claude Skills:让你的 AI 按规矩高效干活
人工智能·claude
JY190641061 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习
IT_陈寒2 小时前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8022 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智2 小时前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
szxinmai主板定制专家4 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan5 小时前
读懂目标检测
人工智能·目标检测·目标跟踪