BERT--学习

一、Transformer

Transformer,是由编码块和解码块两部分组成,其中编码块由多个编码器组成,解码块同样也是由多个解码块组成。

编码器:自注意力 + 全连接

  • **多头自注意力:**Q、K、V
  • 公式:

解码块:自注意力 + 编码 - 解码自注意力 +全连接

  • 多头自注意力
  • **编码---解码自注意力:**Q上个解码器的输出

K、V最后一个编码器输出

二、BERT

  • **bert,**是由Transformer的多个编码器组成。
  • **Base :**12层编码器,每个编码器有12个多头,隐藏维度为768。
  • Large: 24层编码器,每个编码器16个头,隐层维度为1024
  • bert结构 :
python 复制代码
import torch
class MultiHeadAttention(nn.Module):
    def__init__(self,hidden_size,head_num):
        super().__init__()
        self.head_size = hidden_size / head_num
        self.query = nn.Linear(hidden_size, hidden_size)
        self.key = nn.Linear(hidden_size, hidden_size)
        self.value = nn.Linear(hidden_size, hidden_size)
    def transpose_dim(self,x):
        x_new_shape = x.size()[:-1]+(self.head_num, head_size)
        x = x.view(*x_new_shape)
        return x.permute(0,2,1,3)

    def forward(self,x,attention_mask):
        Quary_layer = self.query(x)
        Key_layer = self.key(x)
        Value_layer = self.value(x)

        '''
        B = Quary_layer.shape[0]
        N = Quary_layer.shape[1]
        multi_quary = Quary_layer.view(B,N,self.head_num,self.head_size).transpose(1,2)
        '''
        
        multi_quary =self.transpose_dim(Quary_layer)
        multi_key =self.transpose_dim(Key_layer)
        multi_value =self.transpose_dim(Value_layer)

        attention_scores = torch.matmul(multi_quary, multi_key.transpose(-1,-2))
        attention_scores = attention_scores / math.sqrt(self.head_size)

        attention_probs = nn.Softmax(dim=-1)(attention_scores) 
        context_layer = torch.matmul(attention_probs,values_layer)
        context_layer = context_layer.permute(0,2,1,3).contiguous()
        context_layer_shape =  context_layer.size()[:-2]+(self.hidden_size)
        context_layer = cotext_layer.view(*context_layer_shape 

        return context_layer
        
        
相关推荐
北京地铁1号线17 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
飞哥数智坊17 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能
fantasy_arch17 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Ai工具分享17 小时前
视频画质差怎么办?AI优化视频清晰度技术原理与实战应用
人工智能·音视频
新智元17 小时前
不到 10 天,国产「香蕉」突袭!一次 7 图逼真还原,合成大法惊呆歪果仁
人工智能·openai
LaughingZhu18 小时前
Product Hunt 每日热榜 | 2025-09-07
人工智能·经验分享·搜索引擎·产品运营
星马梦缘18 小时前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
居然JuRan18 小时前
从零开始学大模型之预训练语言模型
人工智能
martinzh18 小时前
向量化与嵌入模型:RAG系统背后的隐形英雄
人工智能
新智元19 小时前
学哲学没出路?不好意思,现在哲学就业碾压 CS!
人工智能·openai