基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
孙同学_1 天前
【Linux篇】信号机制深度剖析:从信号捕捉到SIGCHLD信号处理
linux·信号处理
fie88893 天前
基于循环谱分析的盲源分离信号处理MATLAB
开发语言·matlab·信号处理
WPG大大通3 天前
【经验分享】Genio 520/Genio720未使用引脚处理方法
经验分享·笔记·信号处理·模块测试·usb·功能模块
焦糖码奇朵、3 天前
移动通信网络建设-实验2:5G站点选型与设备部署
网络·数据库·人工智能·5g·信号处理·基带工程
jz_ddk3 天前
[实战] 卡尔曼滤波原理与实现(GITHUB 优秀库解读)
算法·github·信号处理·kalman filter·卡尔曼滤波
这张生成的图像能检测吗7 天前
(论文速读)基于图像堆栈的低频超宽带SAR叶簇隐蔽目标变化检测
图像处理·人工智能·深度学习·机器学习·信号处理·雷达·变化检测
XINVRY-FPGA7 天前
XC7Z020-1CLG484I Xilinx AMD FPGA Zynq-7000 SoC
arm开发·嵌入式硬件·网络协议·fpga开发·硬件工程·信号处理·fpga
Shang180989357268 天前
T41LQ 一款高性能、低功耗的系统级芯片(SoC) 适用于各种AIoT应用智能安防、智能家居方案优选T41L
人工智能·驱动开发·嵌入式硬件·fpga开发·信息与通信·信号处理·t41lq
listhi5209 天前
基于空时阵列最佳旋转角度的卫星导航抗干扰信号处理的完整MATLAB仿真
开发语言·matlab·信号处理
我想吃余9 天前
Linux信号(下):信号保存和信号处理
linux·运维·信号处理