基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
free-elcmacom1 天前
MATLAB信号分析:眼图生成与高速系统评估
开发语言·matlab·信号处理
学术小白人1 天前
【落幕通知】2025年能源互联网与电气工程国际学术会议(EIEE 2025)在大连圆满闭幕
大数据·人工智能·机器人·能源·信号处理·rdlink研发家
北京青翼科技2 天前
【PCIE044】基于复旦微 JFM7VX690T 的全国产化 FPGA 开发套件
图像处理·人工智能·fpga开发·信号处理·智能硬件
达不溜的日记2 天前
UDS诊断-31服务
服务器·stm32·单片机·网络协议·网络安全·信息与通信·信号处理
云雾J视界3 天前
51单片机信号处理实战:C语言A/D与D/A转换应用,从传感器采集到PWM控制全解析
c语言·51单片机·信号处理·pwm·模拟信号·数字信号·a/d
Wokoo73 天前
数据链路层:以太网、MAC 地址及 ARP 协议详解
服务器·网络·后端·网络协议·信号处理
贝塔实验室4 天前
红外编解码彻底解析
网络·嵌入式硬件·信息与通信·信号处理·代码规范·基带工程·精益工程
156082072194 天前
PCIE-403 Pro VU13P+47DR信号处理板
fpga开发·信号处理
DuHz6 天前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(上)
论文阅读·信号处理
DuHz6 天前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(下)
论文阅读·汽车·信息与通信·信号处理