基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
SKYDROID云卓小助手5 天前
三轴云台之控制信号解析与执行
运维·服务器·网络·人工智能·信号处理
khystal6 天前
ISTA为什么要加上软阈值激活函数?r若没有L1 正则化也要加其他激活函数吗?
神经网络·信号处理
2401_823868227 天前
织构表面MATLAB仿真
人工智能·机器学习·matlab·信号处理
霖007 天前
高级项目——基于FPGA的串行FIR滤波器
人工智能·经验分享·matlab·fpga开发·信息与通信·信号处理
刘小小_算法工程师8 天前
「ECG信号处理——(23)基于ECG和PPG信号的血压预测」2025年8月12日
信号处理
鸭鸭鸭进京赶烤9 天前
EI检索-学术会议 | 人工智能、虚拟现实、可视化
人工智能·物联网·5g·信息可视化·云计算·vr·信号处理
青草地溪水旁11 天前
Linux 信号处理标志sa_flags详解
linux·信号处理
青草地溪水旁11 天前
如何理解SA_RESTART”被信号中断的系统调用自动重启“?
linux·信号处理·sa_restart
IOsetting14 天前
信号处理中的混频
信号处理·混频
霖0014 天前
ZYNQ实现FFT信号处理项目
人工智能·经验分享·神经网络·机器学习·fpga开发·信号处理