基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
XY.散人21 小时前
初识Linux · 信号处理 · 续
linux·信号处理
XY.散人1 天前
初识Linux · 信号处理
linux·信号处理
宋发元2 天前
Preamble puncture 信号处理技术
网络·5g·信号处理
FPGA狂飙4 天前
FPGA 常用 I/O 电平标准有哪些?
信号处理·verilog·fpga·vivado·xilinx
北京青翼科技4 天前
【FMC169】基于VITA57.1标准的4发4收射频子模块(基于ADRV9026)
图像处理·人工智能·信号处理·模块测试
柳鲲鹏7 天前
雷达信号处理的流程和恒虚警检测CFAR
信号处理
雷龙发展:Leah8 天前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
陌夏微秋8 天前
51单片机基础02 动态数码管显示-并串转换
arm开发·单片机·嵌入式硬件·51单片机·硬件工程·信息与通信·信号处理
艾思科蓝-何老师【H8053】9 天前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学