基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
xianshengsun1 天前
光通信产业链分析
信号处理
山河君1 天前
音频进阶学习十八——幅频响应相同系统、全通系统、最小相位系统
学习·音视频·信号处理
北京青翼科技1 天前
【PCIE725-0】基于PCIe x16总线架构的VU9P FPGA高性能数据预处理平台
图像处理·人工智能·ai·架构·信号处理·ai编程
射频微波精密2 天前
安铂克科技 APPH 系列相位噪声分析仪:高性能测量的卓越之选
科技·测试工具·信息与通信·信号处理·量子计算
北京青翼科技5 天前
【PCIE737】基于全高PCIe x8总线的KU115 FPGA高性能硬件加速卡
图像处理·人工智能·信号处理·智能硬件
江安吴彦祖8 天前
信号处理:互相关函数
信号处理
山河君9 天前
音频进阶学习十六——LTI系统的差分方程与频域分析一(频率响应)
学习·音视频·信号处理
limingade9 天前
手机打电话时如何识别对方按下的DTMF按键的字符-安卓AI电话机器人
android·人工智能·物联网·智能手机·语音识别·信号处理
network_tester11 天前
5G毫米波测试规范详解:3GPP核心标准、测试流程与实战挑战
网络·网络协议·测试工具·5g·信息与通信·信号处理·射频工程
FPGA狂飙11 天前
快速傅里叶变换(FFT):从数学公式到5G信号,揭开数字世界的“频率密码”
fpga开发·信号处理·verilog·fpga·vivado