基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

基于信息最大化的ICA算法的主要依据是使输入端与输出端的互信息达到最大,且输出各个分量之间的相关性最小化,即输出各个分量之间互信息量最小化,其算法的系统框图如图所示。

图 3 基于改进的信息最大化的ICA算法的系统框图

上图中,U=[u1,u2,u3,...]T是经过该算法之后输出的信号向量,可以用来逼近输入信号,U=W×X。分离信号Y=G(U),G(U)是非线性函数,该函数直接影响分离性能。

信息最大化的ICA算法的判断准则是信息最大传输的原则具体的说就是以分离矩阵W为变量,在熵的表达式中不断调整W,使H(Y)最大化,此时就表明恢复的原始信号U的各个分量之间互信息量极小,非线性输出信号Y与输入X之间互信息满足

对该公式两边关于分离矩阵W进行微分,然后通过公式推导可得,使得H(Y)极大的分离矩阵W的迭代计算公式

其中非线性函数采用G U =11+e -U ,μ是该算法的学习参数取0.05。而 是对第K次迭代输出的各个分量之间的互信息进行度量,理想情况该项应该为-I。

在该算法中,非线性函数G(U)的选择将会直接影响算法性能,因此对非线性函数进行修改是基于信息最大化的ICA算法的主要改进方向之一,文献中讨论了不同的非线性函数对算法性能的影响,发现非线性函数特性越陡峭,越适合作为基于信息最大化的ICA算法的非线性转换函数,而符号函数具有最陡峭的特性,因此采用符号函数作为基于信息最大化的ICA算法的非线性转换函数。

基于信息最大化的ICA算法主要有两点优点,一是该方法拥有较快的收敛速度,二是采用不同非线性函数可以有效降低分离误差。

相关推荐
m0_7482500312 小时前
C++ 信号处理
c++·算法·信号处理
Ro Jace12 小时前
电子侦察信号处理流程及常用算法
算法·信号处理
2502_9116791416 小时前
精准与稳定的基石:Agilent 66311B,为移动通信测试量身定制的核心供电单元
大数据·网络·5g·信息与通信·信号处理
2502_911679142 天前
重新定义测试边界:N5181A信号发生器,何以成为射频领域的性能标杆?
网络·科技·信号处理
打点计时器4 天前
初见波动方程和贝塞尔函数
数学建模·信号处理
小李独爱秋4 天前
计算机网络经典问题透视:MD5报文是什么?有什么特点?
网络·网络协议·计算机网络·网络安全·信息与通信·信号处理
Evand J5 天前
【课题推荐】基于超分辨率技术的低功耗定位系统|低功耗物联网|信号处理。附MATLAB运行结果
物联网·matlab·信号处理
安徽必海微马春梅_6688A5 天前
A实验:穿梭避暗实验箱 大鼠避暗箱 大鼠避暗系统
人工智能·硬件工程·信号处理
Aaron15886 天前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程
byzh_rc7 天前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理