【AI原理解析】—支持向量机原理

目录

[1. 支持向量机(SVM)概述](#1. 支持向量机(SVM)概述)

[2. 超平面与支持向量](#2. 超平面与支持向量)

[3. 间隔最大化](#3. 间隔最大化)

[4. 优化问题](#4. 优化问题)

[5. 核函数](#5. 核函数)

[6. 总结](#6. 总结)


1. 支持向量机(SVM)概述

  • 定义:支持向量机是一种监督学习模型,主要用于数据分类问题。其基本思想是通过一个超平面来分割数据点,使得不同类别的数据点位于超平面的两侧。
  • 分类:支持向量机主要分为三类:线性可分支持向量机、线性支持向量机和非线性支持向量机。

2. 超平面与支持向量

  • 超平面:在n维空间中,超平面是一个n-1维的子空间。在二维空间中,它是一个直线;在三维空间中,它是一个平面。超平面可以表示为 w^T * x + b = 0,其中w是法向量,b是截距,x是样本点。
  • 支持向量:距离超平面最近的样本点称为支持向量。这些点对确定超平面的位置起着决定性作用。

3. 间隔最大化

  • 函数间隔:对于给定的训练集和超平面,样本点 (x_i, y_i) 到超平面的函数间隔为 r_i = y_i(wT * x_i + b)。但是,当w和b成比例变化时,函数间隔也会成比例变化。
  • 几何间隔:为了消除这种影响,引入了几何间隔。样本点 (x_i, y_i) 到超平面的几何间隔为 γ_i = y_i((w / ||w||) * x_i + b / ||w||)。其中 ||w|| 是w的范数。
  • 目标:SVM的目标是找到一个超平面,使得训练集上所有样本点的几何间隔最大。这可以转化为一个优化问题,即最大化几何间隔。

4. 优化问题

  • 优化目标:最小化 ||w||2 / 2,同时满足约束条件 y_i(wT * x_i + b) ≥ 1(对于所有样本点)。这是一个凸二次规划问题。
  • 求解:通过拉格朗日乘子法将原始问题转化为对偶问题,并利用SMO算法求解。最终得到的是w和b的最优解,从而确定最优超平面。

5. 核函数

  • 非线性分类:对于非线性可分的数据,SVM通过引入核函数将数据映射到高维空间,使得数据在高维空间中线性可分。
  • 常用核函数:包括线性核、多项式核、高斯核等。选择合适的核函数对于SVM的性能至关重要。

6. 总结

  • 支持向量机通过找到一个最优超平面来实现对数据的分类。该超平面由支持向量确定,并且使得训练集上所有样本点的几何间隔最大。
  • 对于非线性可分的数据,SVM通过引入核函数将数据映射到高维空间,实现非线性分类。
  • SVM具有泛化能力强、对高维数据有效等优点,在许多领域都有广泛的应用。
相关推荐
亿信华辰软件1 分钟前
大模型重构数据治理新范式:亿信华辰“AI+睿治“的六大智能化突破
人工智能·大模型·数据治理
MILI元宇宙3 分钟前
AI搜索+法律咨询:在「事实重构」与「程序正义」的博弈场‌
人工智能
听吉米讲故事1 小时前
Llama 4全面评测:官方数据亮眼,社区测试显不足之处
人工智能·开源·llama
羊小猪~~2 小时前
深度学习项目--分组卷积与ResNext网络实验探究(pytorch复现)
网络·人工智能·pytorch·python·深度学习·神经网络·机器学习
龙俊杰的读书笔记3 小时前
[leetcode] 面试经典 150 题——篇9:二叉树(番外:二叉树的遍历方式)
数据结构·算法·leetcode·面试
语言专家3 小时前
亲身体验 Copilot Pages:利用人工智能实时整理和优化笔记
人工智能·机器人·copilot
TGITCIC4 小时前
PyTorch:解锁AI新时代的钥匙
人工智能·pytorch·大模型·ai入门·python大模型·ai python·大模型pytorch
Try,多训练4 小时前
Pytorch查看神经网络结构和参数量
人工智能·pytorch·python
数据运营新视界5 小时前
可编辑37页PPT | 建筑行业DeepSeek日常实操培训
人工智能
sml259(劳改版)5 小时前
数据结构--堆
数据结构·算法·