torchaudio.load() 和 librosa.load() 的返回值区别

问题

之前都在使用librosa加载音频数据,今天看到一段代码是用torchaudio加载的音频,发现torchaudio加载的数据和librosa返回的结果不一致。

查看资料后做出以下对比:

torchaudio.load 函数返回一个包含两个张量的元组:

  • 音频数据张量,形状为 (channels, samples)
  • 采样率

而 librosa.load 函数返回:

  • 音频数据numpy数组,形状为 (samples,)
  • 采样率

主要的区别有:

  • torchaudio 返回的是多通道数据,而 librosa 返回的是单通道数据。如果原始音频是多通道的,librosa 会自动将其转换为单通道。
  • torchaudio 返回的音频数据是一个张量,而 librosa 返回的是numpy数组。
python 复制代码
import librosa
import torch
import torchaudio

audio_path = "../data/audio/4324107e-56bc-5ef4-b78b-d524d192b3fc/4324107e-56bc-5ef4-b78b-d524d192b3fc.mp3"
audio, sr = librosa.load(audio_path, sr=16000)
audio1, sr1 = torchaudio.load(audio_path, format='mp3')
print(audio.shape)
print(audio1.shape)

# 处理后数据一致
transform = torchaudio.transforms.Resample(sr1, 16000)
audio1 = transform(torch.mean(audio1, dim=0, keepdim=True))
print(audio.shape)
print(audio1.shape)
复制代码
(11448320,) 16000
torch.Size([2, 34344959]) 48000

(11448320,)
torch.Size([1, 11448320])
相关推荐
康康的AI博客1 小时前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱1 小时前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb11 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako1 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜2 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
不大姐姐AI智能体2 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全3 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch3 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
2501_940198693 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net