英伟达(NVIDIA)数据中心GPU介绍

英伟达(NVIDIA)数据中心GPU按性能由高到低排行:

1. NVIDIA H100

架构:Hopper

核心数量:18352 CUDA Cores, 1456 Tensor Cores

显存:80 GB HBM3

峰值性能:

  • 单精度(FP32):60 TFLOPS
  • 双精度(FP64):30 TFLOPS
  • Tensor Core:1000 TFLOPS (混合精度)
  • 应用场景:H100是为下一代AI和HPC应用设计的,提供极高的计算密度和效率,是目前英伟达最强大的数据中心GPU。

2. NVIDIA A100

架构:Ampere

核心数量:6912 CUDA Cores, 432 Tensor Cores

显存:40 GB 或 80 GB HBM2e

峰值性能:

  • 单精度(FP32):19.5 TFLOPS
  • 双精度(FP64):9.7 TFLOPS
  • Tensor Core:312 TFLOPS (混合精度)
  • 应用场景:高性能计算(HPC)、深度学习训练和推理、大数据分析。A100在其发布时是市场上最强大的数据中心GPU,但现在被H100所超越。

3. NVIDIA V100

架构:Volta

核心数量:5120 CUDA Cores, 640 Tensor Cores

显存:16 GB 或 32 GB HBM2

峰值性能:

  • 单精度(FP32):15.7 TFLOPS
  • 双精度(FP64):7.8 TFLOPS
  • Tensor Core:125 TFLOPS (混合精度)
  • 应用场景:深度学习训练、高性能计算、科学计算。V100是许多AI研究机构和企业的首选。

4. NVIDIA A40

架构:Ampere

核心数量:10752 CUDA Cores, 336 Tensor Cores

显存:48 GB GDDR6

峰值性能:

  • 单精度(FP32):37.4 TFLOPS
  • 双精度(FP64):N/A
  • Tensor Core:300 TFLOPS (混合精度)
  • 应用场景:视觉计算、虚拟化工作站、AI推理等。A40在图形和AI推理性能方面表现优异。

5. NVIDIA T4

架构:Turing

核心数量:2560 CUDA Cores, 320 Tensor Cores

显存:16 GB GDDR6

峰值性能:

  • 单精度(FP32):8.1 TFLOPS
  • 双精度(FP64):0.25 TFLOPS
  • Tensor Core:65 TFLOPS (混合精度)
  • 应用场景:AI推理、图形处理、虚拟桌面基础设施(VDI)。T4以其高效的能耗比广受欢迎。

总结

  • 顶级性能:H100 和 A100代表了当前数据中心GPU的顶尖性能,适用于最苛刻的计算任务。
  • 高性能/成本比:V100 和 A40在性能与成本之间达到了良好的平衡,适用于广泛的应用场景。
  • 高效能耗比:T4适用于能耗敏感的应用场景,尤其是在推理和图形处理方面表现出色。
相关推荐
IT古董1 小时前
【漫话机器学习系列】255.独立同分布(Independent and Identically Distributed,简称 IID)
人工智能·机器学习
fytianlan1 小时前
机器学习 day6 -线性回归练习
人工智能·机器学习·线性回归
算家云1 小时前
通义千问席卷日本!开源界“卷王”阿里通义千问成为日本AI发展新基石
人工智能·开源·通义千问·算家云·国产ai·租算力,到算家云·日本ai
ai产品老杨2 小时前
AI赋能安全生产,推进数智化转型的智慧油站开源了。
前端·javascript·vue.js·人工智能·ecmascript
明月醉窗台2 小时前
[20250507] AI边缘计算开发板行业调研报告 (2024年最新版)
人工智能·边缘计算
Blossom.1183 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
安特尼3 小时前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
带娃的IT创业者3 小时前
《AI大模型应知应会100篇》第59篇:Flowise:无代码搭建大模型应用
人工智能
数澜悠客4 小时前
AI与IoT携手,精准农业未来已来
人工智能·物联网
猎板PCB黄浩4 小时前
AI优化高频PCB信号完整性:猎板PCB的技术突破与应用实践
人工智能