英伟达(NVIDIA)数据中心GPU介绍

英伟达(NVIDIA)数据中心GPU按性能由高到低排行:

1. NVIDIA H100

架构:Hopper

核心数量:18352 CUDA Cores, 1456 Tensor Cores

显存:80 GB HBM3

峰值性能:

  • 单精度(FP32):60 TFLOPS
  • 双精度(FP64):30 TFLOPS
  • Tensor Core:1000 TFLOPS (混合精度)
  • 应用场景:H100是为下一代AI和HPC应用设计的,提供极高的计算密度和效率,是目前英伟达最强大的数据中心GPU。

2. NVIDIA A100

架构:Ampere

核心数量:6912 CUDA Cores, 432 Tensor Cores

显存:40 GB 或 80 GB HBM2e

峰值性能:

  • 单精度(FP32):19.5 TFLOPS
  • 双精度(FP64):9.7 TFLOPS
  • Tensor Core:312 TFLOPS (混合精度)
  • 应用场景:高性能计算(HPC)、深度学习训练和推理、大数据分析。A100在其发布时是市场上最强大的数据中心GPU,但现在被H100所超越。

3. NVIDIA V100

架构:Volta

核心数量:5120 CUDA Cores, 640 Tensor Cores

显存:16 GB 或 32 GB HBM2

峰值性能:

  • 单精度(FP32):15.7 TFLOPS
  • 双精度(FP64):7.8 TFLOPS
  • Tensor Core:125 TFLOPS (混合精度)
  • 应用场景:深度学习训练、高性能计算、科学计算。V100是许多AI研究机构和企业的首选。

4. NVIDIA A40

架构:Ampere

核心数量:10752 CUDA Cores, 336 Tensor Cores

显存:48 GB GDDR6

峰值性能:

  • 单精度(FP32):37.4 TFLOPS
  • 双精度(FP64):N/A
  • Tensor Core:300 TFLOPS (混合精度)
  • 应用场景:视觉计算、虚拟化工作站、AI推理等。A40在图形和AI推理性能方面表现优异。

5. NVIDIA T4

架构:Turing

核心数量:2560 CUDA Cores, 320 Tensor Cores

显存:16 GB GDDR6

峰值性能:

  • 单精度(FP32):8.1 TFLOPS
  • 双精度(FP64):0.25 TFLOPS
  • Tensor Core:65 TFLOPS (混合精度)
  • 应用场景:AI推理、图形处理、虚拟桌面基础设施(VDI)。T4以其高效的能耗比广受欢迎。

总结

  • 顶级性能:H100 和 A100代表了当前数据中心GPU的顶尖性能,适用于最苛刻的计算任务。
  • 高性能/成本比:V100 和 A40在性能与成本之间达到了良好的平衡,适用于广泛的应用场景。
  • 高效能耗比:T4适用于能耗敏感的应用场景,尤其是在推理和图形处理方面表现出色。
相关推荐
适应规律3 分钟前
GPU利用率分析
人工智能
Silence_Jy4 分钟前
Kimi K2技术报告
人工智能·python·深度学习·transformer
AI Echoes8 分钟前
自定义 LangChain 文档加载器使用技巧
数据库·人工智能·python·langchain·prompt·agent
长河9 分钟前
OpenSpec 实战:用规范驱动开发破解 AI 编程协作难题
人工智能
最晚的py10 分钟前
rnn循环神经网络
人工智能·rnn·深度学习·神经网络
90后小陈老师14 分钟前
Java项目接入AI大模型的四种方式
java·开发语言·人工智能
向量引擎小橙16 分钟前
深度|AI浪潮已至:在2026年,我们真正需要掌握什么?
人工智能
2501_9240641126 分钟前
2025年APP隐私合规测试主流方法与工具深度对比
大数据·网络·人工智能
用户51914958484540 分钟前
链式利用CVE-2024–24919:通过Checkpoint安全网关LFI漏洞挖掘敏感SSH密钥
人工智能
linghuocaishui1 小时前
京东用工平台实践:亲测案例复盘分享
人工智能·python