英伟达(NVIDIA)数据中心GPU介绍

英伟达(NVIDIA)数据中心GPU按性能由高到低排行:

1. NVIDIA H100

架构:Hopper

核心数量:18352 CUDA Cores, 1456 Tensor Cores

显存:80 GB HBM3

峰值性能:

  • 单精度(FP32):60 TFLOPS
  • 双精度(FP64):30 TFLOPS
  • Tensor Core:1000 TFLOPS (混合精度)
  • 应用场景:H100是为下一代AI和HPC应用设计的,提供极高的计算密度和效率,是目前英伟达最强大的数据中心GPU。

2. NVIDIA A100

架构:Ampere

核心数量:6912 CUDA Cores, 432 Tensor Cores

显存:40 GB 或 80 GB HBM2e

峰值性能:

  • 单精度(FP32):19.5 TFLOPS
  • 双精度(FP64):9.7 TFLOPS
  • Tensor Core:312 TFLOPS (混合精度)
  • 应用场景:高性能计算(HPC)、深度学习训练和推理、大数据分析。A100在其发布时是市场上最强大的数据中心GPU,但现在被H100所超越。

3. NVIDIA V100

架构:Volta

核心数量:5120 CUDA Cores, 640 Tensor Cores

显存:16 GB 或 32 GB HBM2

峰值性能:

  • 单精度(FP32):15.7 TFLOPS
  • 双精度(FP64):7.8 TFLOPS
  • Tensor Core:125 TFLOPS (混合精度)
  • 应用场景:深度学习训练、高性能计算、科学计算。V100是许多AI研究机构和企业的首选。

4. NVIDIA A40

架构:Ampere

核心数量:10752 CUDA Cores, 336 Tensor Cores

显存:48 GB GDDR6

峰值性能:

  • 单精度(FP32):37.4 TFLOPS
  • 双精度(FP64):N/A
  • Tensor Core:300 TFLOPS (混合精度)
  • 应用场景:视觉计算、虚拟化工作站、AI推理等。A40在图形和AI推理性能方面表现优异。

5. NVIDIA T4

架构:Turing

核心数量:2560 CUDA Cores, 320 Tensor Cores

显存:16 GB GDDR6

峰值性能:

  • 单精度(FP32):8.1 TFLOPS
  • 双精度(FP64):0.25 TFLOPS
  • Tensor Core:65 TFLOPS (混合精度)
  • 应用场景:AI推理、图形处理、虚拟桌面基础设施(VDI)。T4以其高效的能耗比广受欢迎。

总结

  • 顶级性能:H100 和 A100代表了当前数据中心GPU的顶尖性能,适用于最苛刻的计算任务。
  • 高性能/成本比:V100 和 A40在性能与成本之间达到了良好的平衡,适用于广泛的应用场景。
  • 高效能耗比:T4适用于能耗敏感的应用场景,尤其是在推理和图形处理方面表现出色。
相关推荐
SmartBrain1 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成7 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃7 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)7 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑