英伟达(NVIDIA)数据中心GPU介绍

英伟达(NVIDIA)数据中心GPU按性能由高到低排行:

1. NVIDIA H100

架构:Hopper

核心数量:18352 CUDA Cores, 1456 Tensor Cores

显存:80 GB HBM3

峰值性能:

  • 单精度(FP32):60 TFLOPS
  • 双精度(FP64):30 TFLOPS
  • Tensor Core:1000 TFLOPS (混合精度)
  • 应用场景:H100是为下一代AI和HPC应用设计的,提供极高的计算密度和效率,是目前英伟达最强大的数据中心GPU。

2. NVIDIA A100

架构:Ampere

核心数量:6912 CUDA Cores, 432 Tensor Cores

显存:40 GB 或 80 GB HBM2e

峰值性能:

  • 单精度(FP32):19.5 TFLOPS
  • 双精度(FP64):9.7 TFLOPS
  • Tensor Core:312 TFLOPS (混合精度)
  • 应用场景:高性能计算(HPC)、深度学习训练和推理、大数据分析。A100在其发布时是市场上最强大的数据中心GPU,但现在被H100所超越。

3. NVIDIA V100

架构:Volta

核心数量:5120 CUDA Cores, 640 Tensor Cores

显存:16 GB 或 32 GB HBM2

峰值性能:

  • 单精度(FP32):15.7 TFLOPS
  • 双精度(FP64):7.8 TFLOPS
  • Tensor Core:125 TFLOPS (混合精度)
  • 应用场景:深度学习训练、高性能计算、科学计算。V100是许多AI研究机构和企业的首选。

4. NVIDIA A40

架构:Ampere

核心数量:10752 CUDA Cores, 336 Tensor Cores

显存:48 GB GDDR6

峰值性能:

  • 单精度(FP32):37.4 TFLOPS
  • 双精度(FP64):N/A
  • Tensor Core:300 TFLOPS (混合精度)
  • 应用场景:视觉计算、虚拟化工作站、AI推理等。A40在图形和AI推理性能方面表现优异。

5. NVIDIA T4

架构:Turing

核心数量:2560 CUDA Cores, 320 Tensor Cores

显存:16 GB GDDR6

峰值性能:

  • 单精度(FP32):8.1 TFLOPS
  • 双精度(FP64):0.25 TFLOPS
  • Tensor Core:65 TFLOPS (混合精度)
  • 应用场景:AI推理、图形处理、虚拟桌面基础设施(VDI)。T4以其高效的能耗比广受欢迎。

总结

  • 顶级性能:H100 和 A100代表了当前数据中心GPU的顶尖性能,适用于最苛刻的计算任务。
  • 高性能/成本比:V100 和 A40在性能与成本之间达到了良好的平衡,适用于广泛的应用场景。
  • 高效能耗比:T4适用于能耗敏感的应用场景,尤其是在推理和图形处理方面表现出色。
相关推荐
小天才才几秒前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
新加坡内哥谈技术30 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting
中杯可乐多加冰2 小时前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek