横穿自动驾驶

如果有一条线,可以穿起来所有自动驾驶的核心模块,那么我感觉它就是最优化,选择优化变量、构造优化问题、求解优化问题,这几个步骤贯穿了自动驾驶的始终。

先从我的自身接触顺序写起。最开始做个一点深度学习,那还是2016年,深度学习已经飞速发展了4年左右,各种方法层出不穷。有幸看了李飞飞的深度学习课,AK大神讲的大部分内容,手写了一个网络,了解深度学习就是构造并求解一个优化问题,了解了BP,了解了随机梯度下降,带动量的梯度下降,等等一系列优化问题求解方法。

学校里课题选了一个机器人机械臂作业方向,用到了一些图像处理手段包括识别和跟踪,了解了kalman filter, particle filter都可以用来做图像固定片段的跟踪。

后来工作之后做自动驾驶控制问题。了解了kalman filter, 知道了它是求解一个优化问题,可以用来平滑信号。后来从pid一路了解到LQR MPC,知道了LQRMPC都是最优控制里的一种方法,其本身也是构造优化问题,求解优化问题。

到这里其实我已经开始有点疑惑,为什么自动驾驶从上游感知到下游控制都有kalman filter, 都是构建优化问题,求解优化问题,这些优化问题之间有什么区别和联系呢?当时试图学习一些Boyd的凸优化课程,发现根本看不懂,当然现在看懂的可能性也不大。

后面换了工作,做了一阵子激光雷达定位。发现里面更全都是优化问题构造和求解,点云匹配是,前端里程计用的都是XXKF,eskf, ekf ,iekf, iesekf等等。后端里也是构造位姿优化问题。不过是直接利用求解器,过去10年,出现ceres, g2o, gtsam, sesync等等大规模位姿图优化求解器。

后来做过一阵子决策规划。看过一遍APOLLO,发现里面也都是优化问题求解,比如平滑路线是构造QP问题,局部轨迹规划也是构造QP问题。后来写了一阵子状态机if-else,觉得没有什么意思。于是看了一下强化学习的东西,发现核心也是优化问题的构造和求解。

我的疑惑更多了,从最开始的kalman filter 为什么从感知到控制都能用,到后面发现定位也都在用,也发现LQR MPC可以放在底层的控制阶段用,也可以放在规划用,现在很多决策博弈过程本质上也是优化问题求解过程。到DDP iLQR MPC等等从某种程度上也是强化学习。到Kalman filter和LQR的对偶性,等等。

从我接触的东西,最后我得出了前面的结论如果有一条线,可以穿起来自动驾驶的核心模块,那就是最优化。这个结论我自己是非常喜欢的,因为我通过实践和总结,仿佛发现了什么了不得的东西。

后面会有一系列大杂烩,总结一下这10年来遇到的所有优化问题。顺便做一些读书笔记,看看有没有更好玩的东西。

相关推荐
爱喝白开水a8 分钟前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void14 分钟前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG19 分钟前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的23 分钟前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型27 分钟前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知39 分钟前
大厂AI各走“开源”路
人工智能·开源
字节数据平台41 分钟前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC42 分钟前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai
GeeLark1 小时前
GeeLark 9月功能更新回顾
人工智能
mwq301231 小时前
GPT-2 中的 Pre-Layer Normalization (Pre-LN) 架构详解
人工智能