横穿自动驾驶

如果有一条线,可以穿起来所有自动驾驶的核心模块,那么我感觉它就是最优化,选择优化变量、构造优化问题、求解优化问题,这几个步骤贯穿了自动驾驶的始终。

先从我的自身接触顺序写起。最开始做个一点深度学习,那还是2016年,深度学习已经飞速发展了4年左右,各种方法层出不穷。有幸看了李飞飞的深度学习课,AK大神讲的大部分内容,手写了一个网络,了解深度学习就是构造并求解一个优化问题,了解了BP,了解了随机梯度下降,带动量的梯度下降,等等一系列优化问题求解方法。

学校里课题选了一个机器人机械臂作业方向,用到了一些图像处理手段包括识别和跟踪,了解了kalman filter, particle filter都可以用来做图像固定片段的跟踪。

后来工作之后做自动驾驶控制问题。了解了kalman filter, 知道了它是求解一个优化问题,可以用来平滑信号。后来从pid一路了解到LQR MPC,知道了LQRMPC都是最优控制里的一种方法,其本身也是构造优化问题,求解优化问题。

到这里其实我已经开始有点疑惑,为什么自动驾驶从上游感知到下游控制都有kalman filter, 都是构建优化问题,求解优化问题,这些优化问题之间有什么区别和联系呢?当时试图学习一些Boyd的凸优化课程,发现根本看不懂,当然现在看懂的可能性也不大。

后面换了工作,做了一阵子激光雷达定位。发现里面更全都是优化问题构造和求解,点云匹配是,前端里程计用的都是XXKF,eskf, ekf ,iekf, iesekf等等。后端里也是构造位姿优化问题。不过是直接利用求解器,过去10年,出现ceres, g2o, gtsam, sesync等等大规模位姿图优化求解器。

后来做过一阵子决策规划。看过一遍APOLLO,发现里面也都是优化问题求解,比如平滑路线是构造QP问题,局部轨迹规划也是构造QP问题。后来写了一阵子状态机if-else,觉得没有什么意思。于是看了一下强化学习的东西,发现核心也是优化问题的构造和求解。

我的疑惑更多了,从最开始的kalman filter 为什么从感知到控制都能用,到后面发现定位也都在用,也发现LQR MPC可以放在底层的控制阶段用,也可以放在规划用,现在很多决策博弈过程本质上也是优化问题求解过程。到DDP iLQR MPC等等从某种程度上也是强化学习。到Kalman filter和LQR的对偶性,等等。

从我接触的东西,最后我得出了前面的结论如果有一条线,可以穿起来自动驾驶的核心模块,那就是最优化。这个结论我自己是非常喜欢的,因为我通过实践和总结,仿佛发现了什么了不得的东西。

后面会有一系列大杂烩,总结一下这10年来遇到的所有优化问题。顺便做一些读书笔记,看看有没有更好玩的东西。

相关推荐
DFminer1 分钟前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic14 分钟前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天1 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU1 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec1 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子1 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study2 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz2 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子2 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊2 小时前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss