机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
NewsMash17 小时前
PyTorch之父发离职长文,告别Meta
人工智能·pytorch·python
IT_陈寒17 小时前
Python 3.12新特性实测:10个让你的代码提速30%的隐藏技巧 🚀
前端·人工智能·后端
Ztop17 小时前
GPT-5.1 已确认!OpenAI下一步推理升级?对决 Gemini 3 在即
人工智能·gpt·chatgpt
qq_4369621817 小时前
奥威BI:打破数据分析的桎梏,让决策更自由
人工智能·数据挖掘·数据分析
金融Tech趋势派17 小时前
金融机构如何用企业微信实现客户服务优化?
大数据·人工智能·金融·企业微信·企业微信scrm
大模型真好玩17 小时前
LangChain1.0速通指南(三)——LangChain1.0 create_agent api 高阶功能
人工智能·langchain·mcp
汉克老师18 小时前
CCF--LMCC大语言模型能力认证官方样题(第一赛(青少年组)第二部分 程序题 (21--25))
人工智能·语言模型·自然语言处理·lmcc
视界先声18 小时前
如何挑选出色的展厅机器人
人工智能·机器人
沫儿笙18 小时前
YASKAWA机器人焊机气体省气
人工智能·机器人
视界先声18 小时前
教育机器人定制:外观与功能深度指南
人工智能·机器人