机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
安全二次方security²7 分钟前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
汗流浃背了吧,老弟!10 分钟前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
老蒋每日coding22 分钟前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN202037 分钟前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍44 分钟前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉
乌恩大侠44 分钟前
AI-RAN Sionna 开发者套件
人工智能·usrp·mimo·airan·sionna
foundbug9991 小时前
正则化反演的MATLAB实现(适用于地球物理数值反演)
人工智能·matlab
JeffDingAI1 小时前
【Datawhale学习笔记】RLHF微调技术及实践
人工智能·笔记·学习
CourserLi1 小时前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学
人工智能AI技术1 小时前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python