机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
胡伯来了5 分钟前
24 Transformers - 训练自然语言处理模型
人工智能·自然语言处理·transformer·transformers
JoannaJuanCV5 分钟前
自动驾驶—CARLA仿真(29)传感器(Sensors and data)
人工智能·机器学习·自动驾驶
URBBRGROUN4679 分钟前
Spring AI @ToolParam 扩展注解改造实践
大数据·人工智能·spring
中科天工28 分钟前
智能仓储解决方案到底是什么?
大数据·人工智能·智能
Ydwlcloud29 分钟前
AWS国际云服务器新用户优惠全解析:如何聪明地迈出上云第一步?
服务器·人工智能·云计算·aws
天天进步201533 分钟前
【InfiniteTalk 源码分析 04】训练策略拆解:如何实现超长视频的生成稳定性?
人工智能·深度学习
imbackneverdie34 分钟前
更经济实惠的润色方法,告别“中式英文”!
人工智能·考研·ai·自然语言处理·ai写作·研究生·ai工具
天呐草莓39 分钟前
集成学习 (ensemble learning)
人工智能·python·深度学习·算法·机器学习·数据挖掘·集成学习
却道天凉_好个秋40 分钟前
OpenCV(四十七):FLANN特征匹配
人工智能·opencv·计算机视觉
Ma0407131 小时前
【论文阅读27】-LMPHM:基于因果网络和大语言模型-增强知识图网络的故障推理诊断
人工智能·语言模型·自然语言处理