机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
咕噜企业分发小米2 分钟前
阿里云和华为云AI教育产品有哪些创新功能?
人工智能·阿里云·华为云
DeepVis Research5 分钟前
【BCI/Consensus】2026年度脑机接口协同与分布式共识机制基准索引 (Benchmark Index)
人工智能·网络安全·数据集·脑机接口·分布式系统
cyyt5 分钟前
深度学习周报(25.12.29~26.1.4)
人工智能·深度学习
自不量力的A同学8 分钟前
Resemble AI 发布开源语音合成模型 Chatterbox Turbo
人工智能
Master_oid8 分钟前
机器学习28:增强式学习(Deep Reinforcement Learn)③
人工智能·学习·机器学习
PS12323211 分钟前
港口机械安全运行 风速监测技术守护物流畅通
人工智能
万俟淋曦11 分钟前
【论文速递】2025年第51周(Dec-14-20)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器人·大模型·论文·robotics·具身智能
汗流浃背了吧,老弟!12 分钟前
基于 BERT 的指令微调
人工智能·深度学习·bert
Jerryhut15 分钟前
Opencv总结8——停车场项目实战
人工智能·opencv·计算机视觉
WWZZ202516 分钟前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能