机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
饭饭大王666几秒前
CANN 生态深度整合:使用 `pipeline-runner` 构建高吞吐视频分析流水线
人工智能·音视频
初恋叫萱萱1 分钟前
CANN 生态中的异构调度中枢:深入 `runtime` 项目实现高效任务编排
人工智能
简佐义的博客2 分钟前
生信入门进阶指南:学习顶级实验室多组学整合方案,构建肾脏细胞空间分子图谱
人工智能·学习
白日做梦Q2 分钟前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
无名修道院3 分钟前
自学AI制作小游戏
人工智能·lora·ai大模型应用开发·小游戏制作
晚霞的不甘12 分钟前
CANN × ROS 2:为智能机器人打造实时 AI 推理底座
人工智能·神经网络·架构·机器人·开源
互联网Ai好者15 分钟前
MiyoAI数参首发体验——不止于监控,更是你的智能决策参谋
人工智能
island131415 分钟前
CANN HIXL 通信库深度解析:单边点对点数据传输、异步模型与异构设备间显存直接访问
人工智能·深度学习·神经网络
初恋叫萱萱21 分钟前
CANN 生态中的图优化引擎:深入 `ge` 项目实现模型自动调优
人工智能
不爱学英文的码字机器22 分钟前
深度解读CANN生态核心仓库——catlass,打造高效可扩展的分类器技术底座
人工智能·cann