机器学习Day9:集成学习

概念

集成学习通过构建并结合多个学习器来完成学习任务

模型

集成学习的结果通过投票法(少数服从多数)产生,所以学习器要有多样性,精度高不一定是好事

1.Bagging模型并行 训练多个学习器

典型代表:随机森林

随机:数据采样随机,特征选择随机

森林:多个决策树并行放在一起

优点:能够学习高维数据,不用做特征选择;可以进行可视化 展示,便于分析;训练完成后,能给出哪些特征 更重要

理论上,树的数量越多训练效果越好,但当树的数量达到一个值时,增加树的数量作用不大

2.Boosting模型 :先训练出一个基学习器,在此基础上进行调整提升训练效果,以此类推,直至学习器的数量达到预设的值,最终将这些学习器进行加权结合

典型代表:AdaBoost 、xgBoost

AdaBoost会根据前一次的分类效果调整数据权重

3.Stacking堆叠模型 :第一阶段得出各自结果,第二阶段再用前一阶段的结果训练

适合竞赛使用

相关推荐
ISACA中国10 分钟前
2026年网络安全与AI趋势预测
人工智能·安全·web安全
lambo mercy19 分钟前
自回归生成任务
人工智能·数据挖掘·回归
5Gcamera26 分钟前
边缘计算视频分析智能AI盒子使用说明
人工智能·音视频·边缘计算
hg011828 分钟前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
线束线缆组件品替网36 分钟前
IO Audio Technologies 音频线缆抗干扰与带宽设计要点
网络·人工智能·汽车·电脑·音视频·材料工程
Hcoco_me1 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto1 小时前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙1 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错1 小时前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.1 小时前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务