开源模型破局OpenAI服务限制,15分钟灵活搭建RAG和Agent应用

简介: 今天,我们做了两个实验,目标在15分钟内,完成下载社区的开源模型,部署成API,替换LlamaIndex中RAG和LangChain中OpenAI接口Agent的最佳实践,并取得符合预期的结果。

实验一

实验目标:Qwen2+Ollama+LlamaIndex实现RAG应用

实验时长:15分钟

运行设备:Mac,CPU,GPU均可

环境安装:****

复制代码
pip install llama-index llama_index.llms.ollama llama-index-embeddings-huggingface modelscope

复制模型路径,创建名为"ModelFile"的meta文件,内容如下:

复制代码
FROM /mnt/workspace/qwen2-7b-instruct-q5_k_m.gguf
# set the temperature to 0.7 [higher is more creative, lower is more coherent]
PARAMETER temperature 0.7
PARAMETER top_p 0.8
PARAMETER repeat_penalty 1.05
TEMPLATE """{{ if and .First .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
{{ .Response }}"""
# set the system message
SYSTEM """
You are a helpful assistant.
"""

使用ollama create命令创建自定义模型并运行

复制代码
ollama create myqwen2 --file ./ModelFile
ollama run myqwen2

然后运行如下RAG代码:

复制代码
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core.embeddings import resolve_embed_model
from llama_index.llms.ollama import Ollama
import sys
# load doc qwen2 readme
documents = SimpleDirectoryReader("/mnt/workspace/content").load_data()
# bge embedding model
Settings.embed_model = resolve_embed_model("local:/mnt/workspace/bge-base-en-v1.5")
# ollama
Settings.llm = Ollama(model="myqwen2", request_timeout=30.0)
# create index
index = VectorStoreIndex.from_documents(documents)
# Either way we can now query the index
query_engine = index.as_query_engine()
response = query_engine.query("What is the maximum context length supported by Qwen2?")
print(response)

Output

实验二

实验目标:Qwen2+Ollama+Langchain实现Agent应用

实验时长:15分钟

运行设备:Mac,CPU,GPU均可

环境安装:

****

复制代码
pip install langchain_openai langchain langchain_experimental

模型下载:

使用modelscope-cli下载qwen2模型:

复制代码
modelscope download --model=qwen/Qwen2-7B-Instruct-GGUF --local_dir . qwen2-7b-instruct-q5_k_m.gguf

运行Qwen2(本地文件,也可以直接用ollama hub)

复制模型路径,创建名为"ModelFile"的meta文件,内容如下:

复制代码
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
import pandas as pd
# 下载csv文件
df = pd.read_csv(
    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
agent = create_pandas_dataframe_agent(
    ChatOpenAI(api_key='ollama', # ollama 不需要使用真实的API key
        base_url = 'http://127.0.0.1:11434/v1',
        model="myqwen2"),
    df,
    verbose=True,
    allow_dangerous_code=True
)
agent.invoke("how many rows are there?")

使用ollama create命令创建自定义模型并运行

复制代码
ollama create myqwen2 --file ./ModelFile
ollama run myqwen2

运行如下function call 代码(代码解释器):

复制代码
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
import pandas as pd
# 下载csv文件
df = pd.read_csv(
    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
agent = create_pandas_dataframe_agent(
    ChatOpenAI(api_key='ollama', # ollama 不需要使用真实的API key
        base_url = 'http://127.0.0.1:11434/v1',
        model="myqwen2"),
    df,
    verbose=True,
    allow_dangerous_code=True
)
agent.invoke("how many rows are there?")

Output

相关推荐
吴法刚6 小时前
Gemini cli 源码分析之-Agent分析-Agent架构系统分析
架构·agent·ai编程·gemini
16324015417 小时前
回顾-Qwen2.5[1]-->“ 一句话概括论文核心+技术亮点总结”
llm
AI-智能18 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
大模型教程20 小时前
AI基础入门(应用开发篇)——LangChain:核心抽象
langchain·llm·agent
大模型教程20 小时前
LangChain 入门①:什么是 LangChain?LLM 应用开发的 “好帮手”
langchain·llm·agent
AI大模型20 小时前
当大模型遇上垂直领域:微调如何让 AI 从 “什么都会” 到 “样样精通”?
程序员·llm·agent
AI大模型20 小时前
被 LangChain 全家桶搞晕了?LangGraph、LangSmith、LangFlow 一文读懂
langchain·llm·agent
烟袅21 小时前
5 分钟把 Coze 智能体嵌入网页:原生 JS + Vite 极简方案
前端·javascript·llm
智泊AI1 天前
API是什么?为什么需要API?如何调用API(Python示例)
llm
xcLeigh1 天前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流