tensorflow跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. python3.0环境
  3. tensorflow2.0依赖
  4. matplotlib依赖(用于画图)

2、代码实现

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

# 加载并预处理 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
print(x_train)
print(x_test)

# 构建 LeNet-5 模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Conv2D(64, kernel_size=(5, 5), activation='relu'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(120, activation='relu'),
    tf.keras.layers.Dense(84, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 重塑数据以适应模型
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)

# 训练模型
model.fit(x_train, y_train, epochs=5)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc}')

# 保存模型
model.save('lenet-5_model.h5')
print('模型已保存至 lenet-5_model.h5')

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')

# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:image_path为本地图片路径,通过model.save()方法实现模型的保存功能,下次预测使用的时候直接使用训练好的模型即可。下面将给出可直接预测的代码:

python 复制代码
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

from matplotlib.font_manager import FontProperties

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')


# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array


# 预测本地图片
image_path = '7.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 设置支持中文的字体
font_path = "C:/Windows/Fonts/simhei.ttf"  # 替换为你的字体路径,例如 SimHei.ttf
font_prop = FontProperties(fname=font_path)

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}', fontproperties=font_prop)
plt.show()

3、总结

使用tensorflow完成手写体图片的识别功能,其主要难点在安装依赖环境,其他的都是比较简单的事情。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
Juchecar几秒前
翻译:Agentic AI:面向企业应用的智能
人工智能
大邳草民2 分钟前
深入理解 Python 的“左闭右开”设计哲学
开发语言·笔记·python
武子康13 分钟前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
半臻(火白)14 分钟前
从“看见文字”到“理解内容”:DeepSeek-OCR重构OCR 2.0时代的效率革命
人工智能
暴风鱼划水23 分钟前
三维重建【4-A】3D Gaussian Splatting:代码解读
python·深度学习·3d·3dgs
FreeCode40 分钟前
LangChain 1.0智能体开发:记忆组件
人工智能·langchain·agent
Geoking.42 分钟前
PyTorch 中 model.eval() 的使用与作用详解
人工智能·pytorch·python
nn在炼金42 分钟前
图模式分析:PyTorch Compile组件解析
人工智能·pytorch·python
执笔论英雄43 分钟前
【大模型训练】zero2 梯度分片
pytorch·python·深度学习
Danceful_YJ1 小时前
25.样式迁移
人工智能·python·深度学习