tensorflow跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. python3.0环境
  3. tensorflow2.0依赖
  4. matplotlib依赖(用于画图)

2、代码实现

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

# 加载并预处理 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
print(x_train)
print(x_test)

# 构建 LeNet-5 模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Conv2D(64, kernel_size=(5, 5), activation='relu'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(120, activation='relu'),
    tf.keras.layers.Dense(84, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 重塑数据以适应模型
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)

# 训练模型
model.fit(x_train, y_train, epochs=5)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc}')

# 保存模型
model.save('lenet-5_model.h5')
print('模型已保存至 lenet-5_model.h5')

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')

# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:image_path为本地图片路径,通过model.save()方法实现模型的保存功能,下次预测使用的时候直接使用训练好的模型即可。下面将给出可直接预测的代码:

python 复制代码
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

from matplotlib.font_manager import FontProperties

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')


# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array


# 预测本地图片
image_path = '7.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 设置支持中文的字体
font_path = "C:/Windows/Fonts/simhei.ttf"  # 替换为你的字体路径,例如 SimHei.ttf
font_prop = FontProperties(fname=font_path)

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}', fontproperties=font_prop)
plt.show()

3、总结

使用tensorflow完成手写体图片的识别功能,其主要难点在安装依赖环境,其他的都是比较简单的事情。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
银空飞羽19 分钟前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
子不语18035 分钟前
Python——函数
开发语言·python
cg501743 分钟前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z1 小时前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能
daidaidaiyu1 小时前
一文入门 LangChain 开发
python·ai
Curvatureflight1 小时前
GPT-4o Realtime 之后:全双工语音大模型如何改变下一代人机交互?
人工智能·语言模型·架构·人机交互
6***x5451 小时前
C在机器学习中的ML.NET应用
人工智能·机器学习
陈天伟教授1 小时前
基于学习的人工智能(1)机器学习
人工智能·学习
用户47949283569151 小时前
React Grab 原理篇:它是怎么"偷窥" React 的?
人工智能·react.js·ai编程
田里的水稻1 小时前
AI_常见“XX学习”术语速查表
人工智能·学习