tensorflow跑手写体实验

目录

1、环境条件

2、代码实现

3、总结


1、环境条件

  1. pycharm编译器
  2. python3.0环境
  3. tensorflow2.0依赖
  4. matplotlib依赖(用于画图)

2、代码实现

python 复制代码
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

# 加载并预处理 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
print(x_train)
print(x_test)

# 构建 LeNet-5 模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Conv2D(64, kernel_size=(5, 5), activation='relu'),
    tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(120, activation='relu'),
    tf.keras.layers.Dense(84, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 重塑数据以适应模型
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)

# 训练模型
model.fit(x_train, y_train, epochs=5)

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc}')

# 保存模型
model.save('lenet-5_model.h5')
print('模型已保存至 lenet-5_model.h5')

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')

# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array

# 预测本地图片
image_path = '4.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}')
plt.show()

解释:image_path为本地图片路径,通过model.save()方法实现模型的保存功能,下次预测使用的时候直接使用训练好的模型即可。下面将给出可直接预测的代码:

python 复制代码
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

from matplotlib.font_manager import FontProperties

# 加载模型
loaded_model = tf.keras.models.load_model('lenet-5_model.h5')
print('模型已加载')


# 加载并预处理本地图片
def load_and_preprocess_image(image_path):
    img = image.load_img(image_path, color_mode="grayscale", target_size=(28, 28))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0  # 归一化
    img_array = np.expand_dims(img_array, axis=0)  # 添加批次维度
    return img_array


# 预测本地图片
image_path = '7.png'  # 替换为你的本地图片路径
img_array = load_and_preprocess_image(image_path)

# 使用加载的模型进行预测
predictions = loaded_model.predict(img_array)
predicted_label = np.argmax(predictions)

# 打印预测结果
print(f'预测结果: {predicted_label}')

# 设置支持中文的字体
font_path = "C:/Windows/Fonts/simhei.ttf"  # 替换为你的字体路径,例如 SimHei.ttf
font_prop = FontProperties(fname=font_path)

# 显示图片
plt.imshow(img_array[0, :, :, 0], cmap='gray')
plt.title(f'预测结果: {predicted_label}', fontproperties=font_prop)
plt.show()

3、总结

使用tensorflow完成手写体图片的识别功能,其主要难点在安装依赖环境,其他的都是比较简单的事情。

学习之所以会想睡觉,是因为那是梦开始的地方。

ଘ(੭ˊᵕˋ)੭ (开心) ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)ଘ(੭ˊᵕˋ)੭ (开心)

------不写代码不会凸的小刘

相关推荐
猛犸MAMMOTH4 分钟前
Python打卡第46天
开发语言·python·机器学习
多多*30 分钟前
微服务网关SpringCloudGateway+SaToken鉴权
linux·开发语言·redis·python·sql·log4j·bootstrap
HillVue30 分钟前
AI,如何重构理解、匹配与决策?
人工智能·重构
梓仁沐白30 分钟前
【Kotlin】协程
开发语言·python·kotlin
skywalk816336 分钟前
市面上哪款AI开源软件做ppt最好?
人工智能·powerpoint
小九九的爸爸37 分钟前
我是如何让AI帮我还原设计稿的
前端·人工智能·ai编程
Java Fans1 小时前
在WPF项目中集成Python:Python.NET深度实战指南
python·.net·wpf
豌豆花下猫1 小时前
Python 潮流周刊#105:Dify突破10万星、2025全栈开发的最佳实践
后端·python·ai
hanniuniu131 小时前
网络安全厂商F5推出AI Gateway,化解大模型应用风险
人工智能·web安全·gateway
嘻嘻哈哈OK啦1 小时前
day46打卡
python