pytorch实现线性回归

pytorch实现线性回归

代码

python 复制代码
import torch
import numpy as np
from torch.nn import init
from torch.utils import data
from torch import nn

# 数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs))).type(torch.float32)  # 1000*2
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))  # 噪声

batch_size = 10
# 将训练数据的特征和标签组合
dataset = data.TensorDataset(features, labels)
# 随机读取⼩批量
data_iter = data.DataLoader(dataset, batch_size, shuffle=True)

# 使用框架预定义好的层
net = nn.Sequential(nn.Linear(2, 1))  # 输入是二维,输出是一维

# 初始化模型参数
# net[0].weight.data.normal_(0, 0.01)
# net[0].bias.data.fill_(0)
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)

# 计算均方误差使用的是MELoss类,也称为L_2范数
loss = nn.MSELoss()
# 实例化SGD(随机梯度下降)实例
optimizer = torch.optim.SGD(net.parameters(), lr=0.03)

# 训练
num_epochs = 3
l = 0
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))

结果

相关推荐
AI_Auto4 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
一只乔哇噻4 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood4 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头4 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
Dcs5 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding6 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊6 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
学生高德6 小时前
小模型结合大模型的加速方法关键笔记
人工智能·深度学习·机器学习
蓝耘智算6 小时前
GPU算力租赁与算力云平台选型指南:从需求匹配到成本优化的实战思路
大数据·人工智能·ai·gpu算力·蓝耘
liliangcsdn6 小时前
如何用bootstrap模拟估计pass@k
大数据·人工智能·bootstrap