pytorch实现线性回归

pytorch实现线性回归

代码

python 复制代码
import torch
import numpy as np
from torch.nn import init
from torch.utils import data
from torch import nn

# 数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs))).type(torch.float32)  # 1000*2
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))  # 噪声

batch_size = 10
# 将训练数据的特征和标签组合
dataset = data.TensorDataset(features, labels)
# 随机读取⼩批量
data_iter = data.DataLoader(dataset, batch_size, shuffle=True)

# 使用框架预定义好的层
net = nn.Sequential(nn.Linear(2, 1))  # 输入是二维,输出是一维

# 初始化模型参数
# net[0].weight.data.normal_(0, 0.01)
# net[0].bias.data.fill_(0)
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)

# 计算均方误差使用的是MELoss类,也称为L_2范数
loss = nn.MSELoss()
# 实例化SGD(随机梯度下降)实例
optimizer = torch.optim.SGD(net.parameters(), lr=0.03)

# 训练
num_epochs = 3
l = 0
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))

结果

相关推荐
萤丰信息2 分钟前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog3 分钟前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
serve the people4 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8924 小时前
前端机器学习
人工智能·机器学习
陈天伟教授4 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108244 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10114 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里4 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
小女孩真可爱4 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
0***R5154 小时前
人工智能在金融风控中的应用
人工智能