DataWhale-吃瓜教程学习笔记 (六)

学习视频**:第4章-决策树_哔哩哔哩_bilibili
西瓜书对应章节: 第五章 5.1;5.2;5.3


文章目录

  • [MP 神经元](#MP 神经元)
    • [- 感知机模型 (分类模型)](#- 感知机模型 (分类模型))
        • [-- 损失函数定义](#-- 损失函数定义)
          • [--- 感知机学习算法 - 随机梯度下降法](#--- 感知机学习算法 - 随机梯度下降法)
    • [- 神经网络需要解决的问题](#- 神经网络需要解决的问题)
    • [- 误差逆传播算法](#- 误差逆传播算法)

MP 神经元

接收n个收入,并给各个输入赋予计算加权和,并且和自身特有的阈值进行比较(作减法),最后经过处理得到输出。

  • 单个MP神经元:感知机 (sgn 感知函数) ; 对数几率回归 (sigmoid)作为激活函数
  • 多个MP神经元: 神经网络

- 感知机模型 (分类模型)

几何的角度看,感知机的作用是 给定一个数据集D,求得对数据集中样本进行二分类的超平面。

  • 其超平面方程不唯一
  • w 与超平面垂直
  • w 和 b 确定唯一的超平面
  • w 指向正的超平面
  • 恒成立公式:
-- 损失函数定义

特点

  • 永远是非负的
  • 没有误分类点,损失函数为0
  • 误分类点越少,离超平面越近,损失函数值越小

将其中的 − Θ -\Theta −Θ 看作一定值的变量,写作 w T x i w^T x_i wTxi 的形式作为第 n+1 位,可将上式简化为


--- 感知机学习算法 - 随机梯度下降法

- 神经网络需要解决的问题

  • 面对一个具体场景,神经网络该做多深?多宽?
  • 面对一个具体场景,神经网络的结构该如何设计才最合理?
  • 面对一个具体场景,神经网络的输出结果该如何解释?
  • 原则上, 神经网络能够以 任意精度 逼近 任意复杂度连续 函数。

  • 神经网络能够自己比较好的处理特征的问题


- 误差逆传播算法

BP算法 基于随机梯度下降的参数更新算法

  • 随机梯度下降 不能保证一定走到 全局最小点 , 大部分情况下走到的是 局部最小点

相关推荐
Root062423 分钟前
【笔记】记一次easyExcel中注解ExcelProperty映射字段赋值无效问题
java·开发语言·笔记
受之以蒙24 分钟前
Rust并发编程:解锁高效与安全的编程新姿势
笔记·rust
一天八小时2 小时前
计网学习———网络安全
学习·安全·web安全
嵌入式小黑子2 小时前
嵌入式学习第二十三天--网络及TCP
学习
剑走偏锋o.O2 小时前
Jenkins学习笔记
笔记·学习·jenkins
云上艺旅2 小时前
K8S学习之基础十四:k8s中Deployment控制器概述
学习·容器·kubernetes
Panesle2 小时前
bert模型笔记
人工智能·笔记·bert
xiao--xin3 小时前
计算机网络笔记(二)——1.2互联网概述
笔记·计算机网络·rfc·isp·ixp
m0_748229993 小时前
Java 进阶笔记
java·开发语言·笔记