【论文阅读】多任务学习起源类论文《Multi-Task Feature Learning》

多任务特征学习

前言

该论文提出了一种通过低纬度表征多任务共性 的方法.通过建立一个1维范式问题将多任务共同学习特征数进行正则化.这个问题等价于一个凸优化问题,用迭代算法进行求解.整个算法可以理解为非监督模块与监督模块,前者学习多任务的共同表征,后者使用该表征学习每个任务的目标.

论文获取

作者:Andreas Argyriou, Theodoros Evgeniou, Massimiliano Pontil

会议/期刊:Advances in Neural Information Processing Systems (NeurIPS), 2007

1、背景假设

定义特征维度为d,任务数为T, a i t a_{it} ait是第i个特征对任务t的回归参数,假设任务与特征之间的回归参数少许为0 ,也就是说特征维度里大多数与大部分任务都有关.

假设共享特征均为线性

,扩展为非线性可以表示为

,这样多任务的非线性特征W=U A,A为参数 a i t a_{it} ait的矩阵,我们知道a有些许为0,这意味着A有些行为0,W为低秩矩阵.

2、一范式问题

我们目标是求解共享特征u与回归参数a,首先固定u与任务t,可以得到其优化目标函数如下所示,因为问题较难求解,所以增加了a的一范式 .

扩展到全部任务上得到

3、凸优函数

求解上式子是一项具有挑战性的任务,尽管在变量A和U中分别是凸的,整体上这是一个非凸问题。其次,范数不光滑,这使得求解变得更加困难。通过变换,得到下式子是一个凸函数问题(比较老的论文,证明不再展开)

这样,固定D,我们可以通过svm,或者回归类的方法求取w,然后再更新D,如此循环直到收敛,其具体求解过程如下所示:初始化D,W,输入x,y,遍历任务求取w,更新D(更新值的方式是通过低秩矩阵分解得到 ),然后重复求取w过程,直到满足收敛条件.

4、实验

这里主要注意一下实验所用的数据是180个人对20电脑品牌的倾向性,这个数据放到现在来说不算严格的多任务学习了,现在的多任务学习里任务间的差异会更大,比如同时预测销售额与销售量.因此不再展开讨论实验结果.值得注意的是该论文启发了许多基于稀疏性和低秩约束的后续研究.

相关推荐
栗子不爱栗子8 分钟前
从理解AI到驾驭文字:一位技术爱好者的写作工具探索手记
python·学习·ai
sjg200104142 小时前
golang学习随便记x[2,3]-字符串处理与正则表达式
开发语言·学习·golang
fictionist2 小时前
动态 Web 开发技术入门篇
java·服务器·开发语言·笔记·学习·mysql·spring
恰薯条的屑海鸥3 小时前
零基础学前端-传统前端开发(第三期-CSS介绍与应用)
前端·css·学习·css3·前端开发·前端入门·前端教程
阑梦清川4 小时前
国防科技大学计算机基础慕课课堂学习笔记
笔记·学习·数学建模
水水沝淼㵘5 小时前
嵌入式开发学习日志(数据库II && 网页制作)Day38
服务器·c语言·网络·数据结构·数据库·学习
守护者1705 小时前
JAVA学习-练习试用Java实现“一个词频统计工具 :读取文本文件,统计并输出每个单词的频率”
java·学习
不太可爱的叶某人6 小时前
【学习笔记】深入理解Java虚拟机学习笔记——第3章 垃圾收集器与内存分配策略
java·笔记·学习
Chef_Chen6 小时前
从0开始学习R语言--Day21--Kruskal-Wallis检验与Friedman检验
学习
新中地GIS开发老师7 小时前
2025武汉考研形势分析,趋势、挑战与应对策略
学习·考研·arcgis·大学生·gis开发·webgis·地理信息科学