SSA-BP多输入回归|樽海鞘算法-BP神经网络|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、代码步骤介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb 平台编译,将SSA (樽海鞘算法)与BP神经网络 结合,进行多输入数据回归预测

  • 输入训练的数据包含7个特征1个响应值 ,即通过7个输入值预测1个输出值**(多变量回归预测,个数可自行指定)**

  • 自动归一化训练数据,提升网络泛化性

  • 通过SSA算法优化BP神经网络的初始权重、初始偏差等参数

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、代码步骤介绍:

  1. **准备数据集:**首先,准备用于训练BP神经网络的数据集,包括输入特征和对应的标签。

  2. **初始化BP神经网络:**初始化一个标准的BP神经网络结构,包括输入层、隐藏层和输出层,确定神经网络的参数和结构。

  3. **使用SSA算法优化BP神经网络:**将SSA算法应用于BP神经网络的训练过程中,通过优化神经网络的权重和偏置来提高神经网络的性能。

  4. **定义适应度函数:**结合SSA算法和BP神经网络时,需要定义一个适应度函数,用于评估神经网络的性能,例如分类准确率、均方误差等。

  5. **迭代优化:**利用SSA算法不断迭代优化BP神经网络的参数,直到达到收敛条件或者训练次数。

  6. **验证和测试:**在训练完成后,使用验证集和测试集评估结合了SSA算法的BP神经网络的性能,调整参数以获得更好的结果。

  7. **调参优化:**根据验证集和测试集的表现,对神经网络和SSA算法的参数进行调优,以获得最佳的性能。

通过将SSA算法与BP神经网络结合,可以更好地优化神经网络的参数,提高训练效果,加快收敛速度,从而提高神经网络的性能和泛化能力

四、完整程序下载:

相关推荐
代码游侠11 小时前
日历的各种C语言实现方法
c语言·开发语言·学习·算法
春日见15 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
Code小翊15 小时前
”回调“高级
算法·青少年编程
云里雾里!15 小时前
力扣 977. 有序数组的平方:双指针法的优雅解法
算法·leetcode·职场和发展
一只侯子18 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
jianqiang.xue18 小时前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
不许哈哈哈19 小时前
Python数据结构
数据结构·算法·排序算法
J***793919 小时前
后端在分布式系统中的数据分片
算法·哈希算法
sin_hielo21 小时前
leetcode 2872
数据结构·算法·leetcode
dragoooon3421 小时前
[优选算法专题八.分治-归并 ——NO.49 翻转对]
算法