Python绘制ROC曲线

1 问题

如何利用python设计程序,绘制ROC曲线。

2 方法

绘制ROC曲线主要基于python 的sklearn库中的两个函数,roc_curv和auc两个函数。roc_curv 用于计算出fpr(假阳性率)和tpr(真阳性率)auc用于计算曲线下面积,输入为fpr、和tpr

代码清单 1

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc # 计算 fpr, tpr, thread = roc_curve(y_test, y_score) roc_auc[i] = auc(fpr, tpr) # 绘图 plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.savefig('roc.png',) plt.show() |

3 结语

本文介绍了用python实现绘制ROC曲线,并且进行了拓展,使该程序能应用于更多相似的问题。ROC曲线可以用来评估分类器的输出质量。

ROC曲线Y轴为真阳性率,X轴为假阳性率。这意味着曲线的左上角是"理想"点------假阳性率为0,真阳性率为1。

上述的理想情况实际中很难存在,但它确实表示面积下曲线(AUC)越大通常分类效率越好。

ROC曲线的"陡度"也很重要,坡度越大,则越有降低假阳性率,升高真阳性率的趋势。

ROC曲线通常用于二元分类中研究分类器的输出(也可在多分类中使用,需要对标签进行二值化【比如ABC三类,进行分类时将标签进行二值化处理[A(1)、BC(0)】、【B(1)、AC(0)】

相关推荐
试着生存几秒前
java根据List<Object>中的某个属性排序(数据极少,顺序固定)
java·python·list
酷爱码1 分钟前
2025DNS二级域名分发PHP网站源码
开发语言·php
MSTcheng.4 分钟前
【C语言】动态内存管理
c语言·开发语言·算法
热心市民小汪6 分钟前
管理conda下python虚拟环境
开发语言·python·conda
不去幼儿园8 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法
小韩学长yyds13 分钟前
Java调用第三方HTTP接口:从入门到实战
java·开发语言·http
McQueen_LT14 分钟前
聊天室Python脚本——ChatGPT,好用
开发语言·python·chatgpt
如鱼得水不亦乐乎16 分钟前
C Primer Plus 第十章练习
c语言·开发语言
zy_destiny25 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
大数据追光猿27 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer