洪水灾害的数据分析与预测

洪水是暴雨、急剧融冰化雪、风暴潮等自然因素引起的江河湖泊水量迅速增加,或者水位迅猛上涨的一种自然现象,是自然灾害。洪水又称大水,是河流、海洋、湖泊等水体上涨超过一定水位,威胁有关地区的安全,甚至造成灾害的水流。洪水一词,在中国出自先秦《尚书·尧典》。从那时起,四千多年中有过很多次水灾记载,欧洲最早的洪水记载也远在公元前1450年。在西亚的底格里斯-幼发拉底河以及非洲的尼罗河关于洪水的记载,则可追溯到公元前40世纪。2023 年6月24日8时至25日8时,中国15条河流发生超警洪水。2023年,全球洪水等造成了数十亿美元的经济损失。

洪水的频率和严重程度与人口增长趋势相当一致。迅猛的人口增长,扩大耕地,围湖造田,乱砍滥伐等人为破坏不断地改变着地表状态,改变了汇流条件,加剧了洪灾程度。在降水多的年份,洪水是否造成灾害,以及洪水灾害的大小,也离不开人为因素,长期以来人为的森林破坏是其重要原因。长江上游乱砍滥伐的恶果是惊人的水土流失。现已达35万平方千米,每年土壤浸融量达25亿吨。河流、湖泊、水库淤积的泥沙量达20亿吨。仅四川一省一年流入长江各支流的泥沙,如叠成宽高各1米的堤,可以围绕地球赤道16圈。我国第一大淡水湖洞庭湖每年沉积的泥沙达1亿多吨,有专家惊呼:"这样下去,要不了50年,洞庭湖将从地球上消失!"长江之险,险在荆江,由于泥沙俱下,如今荆江段河床比江外地面高出十多米,成了除黄河之外名副其实的地上河。对森林的肆意砍伐不仅危害自己,而且祸及子孙后代,世界上许多地方,如美索不达米亚、小亚细亚、阿尔卑斯山南坡等由于过度砍伐森林,最后都变成了不毛之地。

附件train.csv 中提供了超过100万的洪水数据,其中包含洪水事件的id、季风强度、地形排水、河流管理、森林砍伐、城市化、气候变化、大坝质量、淤积、农业实践、侵蚀、无效防灾、排水系统、海岸脆弱性、滑坡、流域、基础设施恶化、人口得分、湿地损失、规划不足、政策因素和发生洪水的概率。

附件test.csv 中包含了超过70万的洪水数据,其中包含洪水事件的id和上述20个指标得分,缺少发生洪水的概率。附件submit.csv中包含test.csv中的洪水事件的id,缺少发生洪水的概率

请你们的团队通过数学建模和数据分析的方法,预测发生洪水灾害的概率,

解决以下问题:

问题一

请分析附件train.csv中的数据,分析并可视化上述20个指标中,哪些指标与洪水的发生有着密切的关联?哪些指标与洪水发生的相关性不大?并分析可能的原因,然后针对洪水的提前预防,提出你们合理的建议和措施。

思路:关联性就是相关性,重要性,主成成分分析。数据要做归一化处理等基本数据处理要注意。

问题二

问题2. 将附件train.csv 中洪水发生的概率聚类成不同类别,分析具有高、中、低风险的洪水事件的指标特征。然后,选取合适的指标,计算不同指标的权重,建立发生洪水不同风险的预警评价模型,最后进行模型的灵敏度分析

思路:kmeans聚类数量设置为3。多元回归这种就可以得到权重,相当于得到不同指标的概率,选取概率比较高的指标做模型。

问题三

问题3. 基于问题1中指标分析的结果,请建立洪水发生概率的预测模型,从20个指标中选取合适指标,预测洪水发生的概率,并验证你们预测模型的准确性。如果仅用5个关键指标,如何调整改进你们的洪水发生概率的预测模型?

筛选相关性比较高的指标与洪水概率这个指标一起建立预测模型。除了用相关性,重要性,还可以用主成成分分析筛选指标(不要超过五个)。筛选出指标后,建立一个机器学习预测模型(不需要深度学习,不需要时间序列),训练,测试(得到准确率,F1值等)。仅用五个关键指标,主要在于选择权重比较大的,例如主成成分分析,就要筛选主要几个指标加起来权重和大于90%才是比较合适的。(例如 10% 20% 30% 40%权重指标,筛选的就是20% 30% 40%对应的指标)。所以筛选好指标很重要,避免丢失重要信息,否则模型失去了建立的意义。

问题四

问题4. 基于问题2中建立的洪水发生概率的预测模型,预测附件test.csv中所有事件发生洪水的概率,并将预测结果填入附件submit.csv中。然后绘制这74多万件发生洪水的概率的直方图和折线图,分析此结果的分布是否服从正态分布。

使用问题二训练好的模型(save模型),预测test.csv数据(load模型),顺便结果填写到submit.csv中。然后呢就是一个可视化,然后判断正态分布。

附件:

  1. train.csv
  2. test.csv
  3. submit.csv

推荐工具

jupyter,python语言

数学建模比赛编程助手:GPT

视频讲解

B站讲解

相关推荐
橘猫云计算机设计1 小时前
基于ssm的食物营养成分数据分析平台设计与实现(源码+lw+部署文档+讲解),源码可白嫖!
后端·python·信息可视化·数据挖掘·数据分析·django·毕业设计
谁家有个大人3 小时前
数据分析问题思考路径
数据库·数据分析
慕丹3 小时前
虫洞数观系列三 | 数据分析全链路实践:Pandas清洗统计 + Navicat可视化呈现
python·mysql·数据挖掘·数据分析·pandas
Mostcow6 小时前
数据分析_Data-Formulator-0.1.7调用Ollama-0.5问题记录
人工智能·数据挖掘·数据分析
Hali_Botebie7 小时前
【蒸馏用损失】NCEloss介绍,大规模分类任务的损失函数
人工智能·分类·数据挖掘
JINX的诅咒12 小时前
CORDIC算法:三角函数的硬件加速革命——从数学原理到FPGA实现的超高效计算方案
算法·数学建模·fpga开发·架构·信号处理·硬件加速器
2501_9068012017 小时前
BY组态-低代码web可视化组件
前端·物联网·低代码·数学建模·前端框架
北洛学Ai18 小时前
DeepSeek接入飞书多维表格,效率起飞!
信息可视化·数据挖掘·数据分析
2501_9068014821 小时前
BY组态-低代码web可视化组件
前端·物联网·低代码·数学建模·编辑器·web
谱度众合21 小时前
组学数据分析实操系列 | (六)蛋白相互作用域可视化分析
数据挖掘·数据分析