Spark Delta Lake

rm -r dp-203 -f

git clone https://github.com/MicrosoftLearning/dp-203-azure-data-engineer dp-203

cd dp-203/Allfiles/labs/07

./setup.ps1

python 复制代码
%%pyspark
df = spark.read.load('abfss://files@datalakexxxxxxx.dfs.core.windows.net/products/products.csv', format='csv'
## If header exists uncomment line below
##, header=True
)
display(df.limit(10))
python 复制代码
%%pyspark
df = spark.read.load('abfss://files@datalakexxxxxxx.dfs.core.windows.net/products/products.csv', format='csv'
## If header exists uncomment line below
, header=True
)
display(df.limit(10))
python 复制代码
 delta_table_path = "/delta/products-delta"
 df.write.format("delta").save(delta_table_path)
  1. On the files tab, use the icon in the toolbar to return to the root of the files container, and note that a new folder named delta has been created. Open this folder and the products-delta table it contains, where you should see the parquet format file(s) containing the data.
python 复制代码
from delta.tables import *
from pyspark.sql.functions import *

 # Create a deltaTable object
deltaTable = DeltaTable.forPath(spark, delta_table_path)

 # Update the table (reduce price of product 771 by 10%)
deltaTable.update(
     condition = "ProductID == 771",
     set = { "ListPrice": "ListPrice * 0.9" })

 # View the updated data as a dataframe
deltaTable.toDF().show(10)
python 复制代码
 new_df = spark.read.format("delta").load(delta_table_path)
 new_df.show(10)
python 复制代码
 new_df = spark.read.format("delta").option("versionAsOf", 0).load(delta_table_path)
 new_df.show(10)
python 复制代码
deltaTable.history(10).show(20, False, True)
python 复制代码
 spark.sql("CREATE DATABASE AdventureWorks")
 spark.sql("CREATE TABLE AdventureWorks.ProductsExternal USING DELTA LOCATION '{0}'".format(delta_table_path))
 spark.sql("DESCRIBE EXTENDED AdventureWorks.ProductsExternal").show(truncate=False)

This code creates a new database named AdventureWorks and then creates an external tabled named ProductsExternal in that database based on the path to the parquet files you defined previously. It then displays a description of the table's properties. Note that the Location property is the path you specified.

sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM ProductsExternal;
python 复制代码
 df.write.format("delta").saveAsTable("AdventureWorks.ProductsManaged")
 spark.sql("DESCRIBE EXTENDED AdventureWorks.ProductsManaged").show(truncate=False)

This code creates a managed tabled named ProductsManaged based on the DataFrame you originally loaded from the products.csv file (before you updated the price of product 771). You do not specify a path for the parquet files used by the table - this is managed for you in the Hive metastore, and shown in the Location property in the table description (in the files/synapse/workspaces/synapsexxxxxxx/warehouse path).

sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM ProductsManaged;
sql 复制代码
%%sql

 USE AdventureWorks;

 SHOW TABLES;
sql 复制代码
%%sql

 USE AdventureWorks;

 DROP TABLE IF EXISTS ProductsExternal;
 DROP TABLE IF EXISTS ProductsManaged;
  1. Return to the files tab and view the files/delta/products-delta folder. Note that the data files still exist in this location. Dropping the external table has removed the table from the metastore, but left the data files intact.
  2. View the files/synapse/workspaces/synapsexxxxxxx/warehouse folder, and note that there is no folder for the ProductsManaged table data. Dropping a managed table removes the table from the metastore and also deletes the table's data files.
sql 复制代码
%%sql

 USE AdventureWorks;

 CREATE TABLE Products
 USING DELTA
 LOCATION '/delta/products-delta';
sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM Products;
python 复制代码
 from notebookutils import mssparkutils
 from pyspark.sql.types import *
 from pyspark.sql.functions import *

 # Create a folder
 inputPath = '/data/'
 mssparkutils.fs.mkdirs(inputPath)

 # Create a stream that reads data from the folder, using a JSON schema
 jsonSchema = StructType([
 StructField("device", StringType(), False),
 StructField("status", StringType(), False)
 ])
 iotstream = spark.readStream.schema(jsonSchema).option("maxFilesPerTrigger", 1).json(inputPath)

 # Write some event data to the folder
 device_data = '''{"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"error"}
 {"device":"Dev2","status":"ok"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}'''
 mssparkutils.fs.put(inputPath + "data.txt", device_data, True)
 print("Source stream created...")

Ensure the message Source stream created... is printed. The code you just ran has created a streaming data source based on a folder to which some data has been saved, representing readings from hypothetical IoT devices.

python 复制代码
 # Write the stream to a delta table
 delta_stream_table_path = '/delta/iotdevicedata'
 checkpointpath = '/delta/checkpoint'
 deltastream = iotstream.writeStream.format("delta").option("checkpointLocation", checkpointpath).start(delta_stream_table_path)
 print("Streaming to delta sink...")
python 复制代码
 # Read the data in delta format into a dataframe
 df = spark.read.format("delta").load(delta_stream_table_path)
 display(df)
python 复制代码
 # create a catalog table based on the streaming sink
 spark.sql("CREATE TABLE IotDeviceData USING DELTA LOCATION '{0}'".format(delta_stream_table_path))
sql 复制代码
 %%sql

 SELECT * FROM IotDeviceData;
python 复制代码
 # Add more data to the source stream
 more_data = '''{"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"error"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}'''

 mssparkutils.fs.put(inputPath + "more-data.txt", more_data, True)
sql 复制代码
%%sql

 SELECT * FROM IotDeviceData;
python 复制代码
 deltastream.stop()
sql 复制代码
 -- This is auto-generated code
 SELECT
     TOP 100 *
 FROM
     OPENROWSET(
         BULK 'https://datalakexxxxxxx.dfs.core.windows.net/files/delta/products-delta/',
         FORMAT = 'DELTA'
     ) AS [result]
sql 复制代码
 USE AdventureWorks;

 SELECT * FROM Products;

Run the code and observe that you can also use the serverless SQL pool to query Delta Lake data in catalog tables that are defined the Spark metastore.

相关推荐
_oP_i2 小时前
Pinpoint 是一个开源的分布式追踪系统
java·分布式·开源
武子康2 小时前
大数据-258 离线数仓 - Griffin架构 配置安装 Livy 架构设计 解压配置 Hadoop Hive
java·大数据·数据仓库·hive·hadoop·架构
lucky_syq4 小时前
Flume和Kafka的区别?
大数据·kafka·flume
攻心的子乐4 小时前
Kafka可视化工具 Offset Explorer (以前叫Kafka Tool)
分布式·kafka
AI_NEW_COME4 小时前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
小林想被监督学习4 小时前
RabbitMQ 的7种工作模式
分布式·rabbitmq
it噩梦4 小时前
es 中 terms set 使用
大数据·elasticsearch
中科岩创4 小时前
中科岩创边坡自动化监测解决方案
大数据·网络·物联网
初晴~6 小时前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
DolphinScheduler社区6 小时前
作业帮基于 Apache DolphinScheduler 3_0_0 的缺陷修复与优化
大数据