Spark Delta Lake

rm -r dp-203 -f

git clone https://github.com/MicrosoftLearning/dp-203-azure-data-engineer dp-203

cd dp-203/Allfiles/labs/07

./setup.ps1

python 复制代码
%%pyspark
df = spark.read.load('abfss://files@datalakexxxxxxx.dfs.core.windows.net/products/products.csv', format='csv'
## If header exists uncomment line below
##, header=True
)
display(df.limit(10))
python 复制代码
%%pyspark
df = spark.read.load('abfss://files@datalakexxxxxxx.dfs.core.windows.net/products/products.csv', format='csv'
## If header exists uncomment line below
, header=True
)
display(df.limit(10))
python 复制代码
 delta_table_path = "/delta/products-delta"
 df.write.format("delta").save(delta_table_path)
  1. On the files tab, use the icon in the toolbar to return to the root of the files container, and note that a new folder named delta has been created. Open this folder and the products-delta table it contains, where you should see the parquet format file(s) containing the data.
python 复制代码
from delta.tables import *
from pyspark.sql.functions import *

 # Create a deltaTable object
deltaTable = DeltaTable.forPath(spark, delta_table_path)

 # Update the table (reduce price of product 771 by 10%)
deltaTable.update(
     condition = "ProductID == 771",
     set = { "ListPrice": "ListPrice * 0.9" })

 # View the updated data as a dataframe
deltaTable.toDF().show(10)
python 复制代码
 new_df = spark.read.format("delta").load(delta_table_path)
 new_df.show(10)
python 复制代码
 new_df = spark.read.format("delta").option("versionAsOf", 0).load(delta_table_path)
 new_df.show(10)
python 复制代码
deltaTable.history(10).show(20, False, True)
python 复制代码
 spark.sql("CREATE DATABASE AdventureWorks")
 spark.sql("CREATE TABLE AdventureWorks.ProductsExternal USING DELTA LOCATION '{0}'".format(delta_table_path))
 spark.sql("DESCRIBE EXTENDED AdventureWorks.ProductsExternal").show(truncate=False)

This code creates a new database named AdventureWorks and then creates an external tabled named ProductsExternal in that database based on the path to the parquet files you defined previously. It then displays a description of the table's properties. Note that the Location property is the path you specified.

sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM ProductsExternal;
python 复制代码
 df.write.format("delta").saveAsTable("AdventureWorks.ProductsManaged")
 spark.sql("DESCRIBE EXTENDED AdventureWorks.ProductsManaged").show(truncate=False)

This code creates a managed tabled named ProductsManaged based on the DataFrame you originally loaded from the products.csv file (before you updated the price of product 771). You do not specify a path for the parquet files used by the table - this is managed for you in the Hive metastore, and shown in the Location property in the table description (in the files/synapse/workspaces/synapsexxxxxxx/warehouse path).

sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM ProductsManaged;
sql 复制代码
%%sql

 USE AdventureWorks;

 SHOW TABLES;
sql 复制代码
%%sql

 USE AdventureWorks;

 DROP TABLE IF EXISTS ProductsExternal;
 DROP TABLE IF EXISTS ProductsManaged;
  1. Return to the files tab and view the files/delta/products-delta folder. Note that the data files still exist in this location. Dropping the external table has removed the table from the metastore, but left the data files intact.
  2. View the files/synapse/workspaces/synapsexxxxxxx/warehouse folder, and note that there is no folder for the ProductsManaged table data. Dropping a managed table removes the table from the metastore and also deletes the table's data files.
sql 复制代码
%%sql

 USE AdventureWorks;

 CREATE TABLE Products
 USING DELTA
 LOCATION '/delta/products-delta';
sql 复制代码
%%sql

 USE AdventureWorks;

 SELECT * FROM Products;
python 复制代码
 from notebookutils import mssparkutils
 from pyspark.sql.types import *
 from pyspark.sql.functions import *

 # Create a folder
 inputPath = '/data/'
 mssparkutils.fs.mkdirs(inputPath)

 # Create a stream that reads data from the folder, using a JSON schema
 jsonSchema = StructType([
 StructField("device", StringType(), False),
 StructField("status", StringType(), False)
 ])
 iotstream = spark.readStream.schema(jsonSchema).option("maxFilesPerTrigger", 1).json(inputPath)

 # Write some event data to the folder
 device_data = '''{"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"error"}
 {"device":"Dev2","status":"ok"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}'''
 mssparkutils.fs.put(inputPath + "data.txt", device_data, True)
 print("Source stream created...")

Ensure the message Source stream created... is printed. The code you just ran has created a streaming data source based on a folder to which some data has been saved, representing readings from hypothetical IoT devices.

python 复制代码
 # Write the stream to a delta table
 delta_stream_table_path = '/delta/iotdevicedata'
 checkpointpath = '/delta/checkpoint'
 deltastream = iotstream.writeStream.format("delta").option("checkpointLocation", checkpointpath).start(delta_stream_table_path)
 print("Streaming to delta sink...")
python 复制代码
 # Read the data in delta format into a dataframe
 df = spark.read.format("delta").load(delta_stream_table_path)
 display(df)
python 复制代码
 # create a catalog table based on the streaming sink
 spark.sql("CREATE TABLE IotDeviceData USING DELTA LOCATION '{0}'".format(delta_stream_table_path))
sql 复制代码
 %%sql

 SELECT * FROM IotDeviceData;
python 复制代码
 # Add more data to the source stream
 more_data = '''{"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"ok"}
 {"device":"Dev1","status":"error"}
 {"device":"Dev2","status":"error"}
 {"device":"Dev1","status":"ok"}'''

 mssparkutils.fs.put(inputPath + "more-data.txt", more_data, True)
sql 复制代码
%%sql

 SELECT * FROM IotDeviceData;
python 复制代码
 deltastream.stop()
sql 复制代码
 -- This is auto-generated code
 SELECT
     TOP 100 *
 FROM
     OPENROWSET(
         BULK 'https://datalakexxxxxxx.dfs.core.windows.net/files/delta/products-delta/',
         FORMAT = 'DELTA'
     ) AS [result]
sql 复制代码
 USE AdventureWorks;

 SELECT * FROM Products;

Run the code and observe that you can also use the serverless SQL pool to query Delta Lake data in catalog tables that are defined the Spark metastore.

相关推荐
koping_wu11 小时前
【RabbitMQ】架构原理、消息丢失、重复消费、顺序消费、事务消息
分布式·架构·rabbitmq
Jabes.yang12 小时前
Java面试场景:从Spring Web到Kafka的音视频应用挑战
大数据·spring boot·kafka·spring security·java面试·spring webflux
Hello.Reader12 小时前
Flink 第三方序列化Kryo 注册、Protobuf/Thrift 接入与坑位避雷
大数据·flink
喵桑..12 小时前
kafka源码阅读
分布式·kafka
斯普信专业组13 小时前
使用Reindex迁移Elasticsearch集群数据详解(下)
大数据·elasticsearch
阿里云大数据AI技术14 小时前
云栖实录|MaxCompute全新升级:AI时代的原生数据仓库
大数据·数据库·云原生
酷ku的森14 小时前
RabbitMQ的概述
分布式·rabbitmq
QYResearch15 小时前
导航浮标灯市场现状及前景分析
大数据
QYResearch16 小时前
2025年全球半导体用电子湿化学品行业总体规模、主要企业国内外市场占有率及排名
大数据
搞科研的小刘选手16 小时前
【通信&网络安全主题】第六届计算机通信与网络安全国际学术会议(CCNS 2025)
大数据·人工智能·网络安全·vr·通信工程·网络技术·计算机工程