LLM - 卷积神经网络(CNN)

  1. 卷积神经网络结构:分为输入层,卷积层,池化层,全连接层;

(1)首先进入输入层,对数据数据进行处理,将输入数据向量化处理,最终形成输入矩阵。

(2)接着进入卷积层,根据不同卷积核来对输入数据进行卷积操作,得到特征向量。

(3)然后进入池化层,对特征向量进一步提取,一般是提取局部最大值(max pooling)或局部均值(average pooling)

(4)最后进入全连接层,对前述特征向量进行处理,得到输出值。

  1. 卷积神经网络在NLP上的例子:

(1)X表示输入数据,是一个矩阵,即由多个词向量组成的一个矩阵,如下图。

(2)卷积操作,有一个卷积核(m*m大小的),在输入矩阵进行滑动,每次计算一个卷积结果(结果是标量,即一个特征值),如下图所示,当在卷积窗口滑动完成时,会得到一个特征向量。

(3)池化操作

(4)全连接层线性变换

  1. CNN应用场景及相关论文
  1. CNN优点

(1)擅长提取局部特征。

(2)CNN共享模型参数(卷积核)

(3)CNN可以并行化计算

相关推荐
小途软件8 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者9 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai
薛不痒9 小时前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
Yeats_Liao10 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
棒棒的皮皮11 小时前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉
AI街潜水的八角13 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
资深web全栈开发14 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
540_54014 小时前
ADVANCE Day45
人工智能·python·深度学习
云和数据.ChenGuang14 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
纪伊路上盛名在15 小时前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达