LLM - 卷积神经网络(CNN)

  1. 卷积神经网络结构:分为输入层,卷积层,池化层,全连接层;

(1)首先进入输入层,对数据数据进行处理,将输入数据向量化处理,最终形成输入矩阵。

(2)接着进入卷积层,根据不同卷积核来对输入数据进行卷积操作,得到特征向量。

(3)然后进入池化层,对特征向量进一步提取,一般是提取局部最大值(max pooling)或局部均值(average pooling)

(4)最后进入全连接层,对前述特征向量进行处理,得到输出值。

  1. 卷积神经网络在NLP上的例子:

(1)X表示输入数据,是一个矩阵,即由多个词向量组成的一个矩阵,如下图。

(2)卷积操作,有一个卷积核(m*m大小的),在输入矩阵进行滑动,每次计算一个卷积结果(结果是标量,即一个特征值),如下图所示,当在卷积窗口滑动完成时,会得到一个特征向量。

(3)池化操作

(4)全连接层线性变换

  1. CNN应用场景及相关论文
  1. CNN优点

(1)擅长提取局部特征。

(2)CNN共享模型参数(卷积核)

(3)CNN可以并行化计算

相关推荐
All The Way North-12 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑13 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh13 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
咚咚王者15 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖16 小时前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
koo36416 小时前
pytorch深度学习笔记19
pytorch·笔记·深度学习
哥布林学者18 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(三)注意力机制
深度学习·ai
A先生的AI之旅18 小时前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits18 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
下午写HelloWorld18 小时前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn