LLM - 卷积神经网络(CNN)

  1. 卷积神经网络结构:分为输入层,卷积层,池化层,全连接层;

(1)首先进入输入层,对数据数据进行处理,将输入数据向量化处理,最终形成输入矩阵。

(2)接着进入卷积层,根据不同卷积核来对输入数据进行卷积操作,得到特征向量。

(3)然后进入池化层,对特征向量进一步提取,一般是提取局部最大值(max pooling)或局部均值(average pooling)

(4)最后进入全连接层,对前述特征向量进行处理,得到输出值。

  1. 卷积神经网络在NLP上的例子:

(1)X表示输入数据,是一个矩阵,即由多个词向量组成的一个矩阵,如下图。

(2)卷积操作,有一个卷积核(m*m大小的),在输入矩阵进行滑动,每次计算一个卷积结果(结果是标量,即一个特征值),如下图所示,当在卷积窗口滑动完成时,会得到一个特征向量。

(3)池化操作

(4)全连接层线性变换

  1. CNN应用场景及相关论文
  1. CNN优点

(1)擅长提取局部特征。

(2)CNN共享模型参数(卷积核)

(3)CNN可以并行化计算

相关推荐
Theodore_10223 分钟前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.11830 分钟前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Aurora-silas1 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理
XIAO·宝2 小时前
深度学习------YOLOV3
人工智能·深度学习·yolo
apocalypsx3 小时前
深度学习-卷积神经网络基础
人工智能·深度学习·cnn
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-33]:模型层技术 - 大模型的神经网络架构
人工智能·神经网络·架构
Rock_yzh5 小时前
AI学习日记——PyTorch深度学习快速入门:神经网络构建与训练实战
人工智能·pytorch·python·深度学习·神经网络·学习
AI 嗯啦5 小时前
深度学习——Python 爬虫原理与实战:从入门到项目实践
爬虫·python·深度学习
一条星星鱼5 小时前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
香菜烤面包6 小时前
Attention:MHA->MQA->GQA->MLA
人工智能·深度学习