LLM - 卷积神经网络(CNN)

  1. 卷积神经网络结构:分为输入层,卷积层,池化层,全连接层;

(1)首先进入输入层,对数据数据进行处理,将输入数据向量化处理,最终形成输入矩阵。

(2)接着进入卷积层,根据不同卷积核来对输入数据进行卷积操作,得到特征向量。

(3)然后进入池化层,对特征向量进一步提取,一般是提取局部最大值(max pooling)或局部均值(average pooling)

(4)最后进入全连接层,对前述特征向量进行处理,得到输出值。

  1. 卷积神经网络在NLP上的例子:

(1)X表示输入数据,是一个矩阵,即由多个词向量组成的一个矩阵,如下图。

(2)卷积操作,有一个卷积核(m*m大小的),在输入矩阵进行滑动,每次计算一个卷积结果(结果是标量,即一个特征值),如下图所示,当在卷积窗口滑动完成时,会得到一个特征向量。

(3)池化操作

(4)全连接层线性变换

  1. CNN应用场景及相关论文
  1. CNN优点

(1)擅长提取局部特征。

(2)CNN共享模型参数(卷积核)

(3)CNN可以并行化计算

相关推荐
众趣科技1 天前
前馈神经网络入门:空间计算的三维重建魔法
人工智能·神经网络·空间计算
爱喝可乐的老王1 天前
PyTorch搭建神经网络
pytorch·深度学习·神经网络
有Li1 天前
3D CT图像的MedLSAM:定位并分割任何模型/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·计算机视觉
咚咚王者1 天前
人工智能之核心技术 深度学习 第九章 框架实操(PyTorch / TensorFlow)
人工智能·pytorch·深度学习
AI人工智能+1 天前
联机手写签名识别技术通过采集书写时的压力、速度、轨迹等动态特征,构建独特的“行为指纹“
深度学习·联机手写签名识别·手写签名识别
大模型最新论文速读1 天前
NCoTS:搜索最优推理路径,改进大模型推理效果
人工智能·深度学习·机器学习·语言模型·自然语言处理
偷吃的耗子1 天前
【CNN算法理解】:MNIST手写数字识别训练过程
算法·机器学习·cnn
神经蛙没头脑1 天前
2026年AI产品榜·全球总榜, 2月3日更新
人工智能·神经网络·机器学习·计算机视觉·语言模型·自然语言处理·自动驾驶
盼小辉丶1 天前
Transformer实战(35)——跨语言相似性任务
深度学习·自然语言处理·transformer
JOYCE_Leo161 天前
MPRNet: Multi-Stage Progressive Image Restoration-CVPR2021
深度学习·图像复原·all in one