机器学习——决策树及其可视化

1、决策树概念

顾名思义,决策树是利用数据结构中树结构来进行判断,每一个结点相当于一个判断条件,叶子结点即是最终的类别。以鸢尾花为例,可以得到如下的决策树:

2、决策树分类的依据是什么?

根据前面分析,我们知道,决策树每个非叶子节点相当于一个判断条件,那如何来选择这些条件呢?举个简单的例子,给定两个样本,如果判断条件不同,那么分类的次数和结果可能就不同。为了方便选择,常用的方法有以下三种:
1)信息增益 :根据信息的定义之一:信息是可以减少不确定性的东西(香农---信息论奠基人),信息增益是基于 (Entropy)的度量,熵是一个集合中数据的不确定性或混乱程度。信息增益衡量的是在某个特征上划分数据后,数据的不确定性减少了多少。信息增益越大,特征越好。

公式:

2)基尼系数

基尼指数是一种衡量集合纯度的度量,基尼指数越低,数据纯度越高 。在决策树中,我们选择基尼指数最小的特征进行划分。

公式:

3)增益率

增益率是对信息增益的一种改进,旨在解决信息增益偏向于选择取值较多的特征的问题。增益率通过对信息增益进行归一化处理来减少这种偏好。

通常使用基尼系数和信息增益来衡量分类的依据。

3、根据天气决策是否打网球案例。(使用决策树)

python 复制代码
import pandas as pd
data = {
    'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'],
    'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'],
    'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'],
    'Windy': [False, True, False, False, False, True, True, False, False, False, True, True, False, True],
    'PlayTennis': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
}
data = pd.DataFrame(data)
X = data[['Outlook', 'Temperature', 'Humidity', 'Windy']]
y = data['PlayTennis']
x=pd.get_dummies(X)   # 转化成独热码
from sklearn.tree import DecisionTreeClassifier
estimator = DecisionTreeClassifier(criterion='gini')    # criterion为选择标准,默认为gini,即基尼系数,entropy为信息增益
estimator.fit(x,y)
# 输入十个案例进行判断
test_data = [
    {"Outlook": "Rain", "Temperature": "Hot", "Humidity": "High", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Sunny", "Temperature": "Mild", "Humidity": "High", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Mild", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Cool", "Humidity": "Normal", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Rain", "Temperature": "Cool", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Hot", "Humidity": "Normal", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Hot", "Humidity": "Normal", "Windy": True, "PlayTennis": "Yes"},
    {"Outlook": "Rain", "Temperature": "Mild", "Humidity": "Normal", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Cool", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Mild", "Humidity": "Normal", "Windy": False, "PlayTennis": "Yes"}
]
test_data = pd.DataFrame(test_data)
x_test = test_data[['Outlook', 'Temperature', 'Humidity', 'Windy']]
x_test = pd.get_dummies((x_test))
estimator.predict(x_test)

预测结果如下所示:

python 复制代码
estimator.score(x_test,test_data['PlayTennis'])  # 正确率计算,结果为0.8

4、决策树的可视化

使用API:sklearn.tree.export_graphviz(estimator, out_file="", feature_names=[","])

python 复制代码
out_file后缀需要为.dot文件,feature_names传入对应的特征名称即可,否则显示异常

最后将生成的.dot文件在决策树可视化网站显示即可,以上述为例:

相关推荐
Mintopia23 分钟前
Trae Coding - 「Excel 秒变海报」—— 上传 CSV,一句话生成可打印信息图。
前端·人工智能·trae
大千AI助手25 分钟前
多叉树:核心概念、算法实现与全领域应用
人工智能·算法·决策树·机器学习··多叉树·大千ai助手
无妄无望26 分钟前
ragflow代码学习切片方式(1)docling_parser.py
人工智能·python·学习
努力的光头强36 分钟前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
2501_941149111 小时前
人工智能驱动下的边缘物联网革新,打造未来全球智能互联新格局
人工智能·物联网
没头脑的男大1 小时前
Unet+Transformer脑肿瘤分割检测
人工智能·深度学习·transformer
AI即插即用1 小时前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
AY呀1 小时前
DeepSeek:探索AI大模型与开发工具的全景指南
后端·机器学习
1***81532 小时前
免费的自然语言处理教程,NLP入门
人工智能·自然语言处理
算家计算2 小时前
Gemini 3.0重磅发布!技术全面突破:百万上下文、全模态推理与开发者生态重构
人工智能·资讯·gemini