springboot集成gzip和zip数据压缩传输-满足2k数据自动压缩(适用大数据信息传输)

文章目录

1)、springboot的gzip压缩-满足2k数据自动压缩

1.1后端压缩
java 复制代码
 @GetMapping(value = "/data", produces = "application/json")
    public void getData(HttpServletResponse response) throws IOException {
        String data = "your large data here"; // Replace with actual large data

        response.setHeader("Content-Encoding", "gzip");
        response.setContentType("application/json");

        try (OutputStream os = response.getOutputStream();
             GZIPOutputStream gzipOutputStream = new GZIPOutputStream(os)) {
            gzipOutputStream.write(data.getBytes());
        }
    }
1.2前端解压
js 复制代码
fetch('/api/data', {
    headers: {
        'Accept-Encoding': 'gzip'
    }
})
.then(response => {
    if (response.ok) {
        return response.blob();
    }
    throw new Error('Network response was not ok.');
})
.then(blob => {
    const reader = new FileReader();
    reader.onload = () => {
        const decompressedData = pako.inflate(reader.result, { to: 'string' });
        console.log(JSON.parse(decompressedData));
    };
    reader.readAsArrayBuffer(blob);
})
.catch(error => {
    console.error('There was a problem with your fetch operation:', error);
});
1.3 满足最小响应大小(2KB)和指定MIME类型的响应进行GZIP压缩

将为JSON、XML、文本和JavaScript以及CSS等类型的响应启用GZIP压缩,并且响应大小至少需要2KB才会被压缩

yml配置
yml 复制代码
# application.yml
server:
  compression:
    enabled: true
    mime-types: application/json,application/xml,text/html,text/xml,text/plain,application/javascript,text/css
    min-response-size: 2048
自定义配置或者使用Java配置

创建了一个ShallowEtagHeaderFilter bean和一个GzipCompressingFilter bean,后者会对满足最小响应大小(2KB)和指定MIME类型的响应进行GZIP压缩

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpMethod;
import org.springframework.web.filter.ShallowEtagHeaderFilter;
 
import java.util.Arrays;
import java.util.List;
 
@Configuration
public class GzipConfig {
 
    @Bean
    public ShallowEtagHeaderFilter shallowEtagHeaderFilter() {
        return new ShallowEtagHeaderFilter();
    }
 
    @Bean
    public GzipCompressingFilter gzipCompressingFilter() {
        GzipCompressingFilter filter = new GzipCompressingFilter();
        filter.setMinGzipSize(2048);
        List<String> mimeTypes = Arrays.asList("text/html", "text/xml", "text/plain", "text/css", "application/javascript", "application/json", "application/xml");
        filter.setMimeTypes(mimeTypes);
        return filter;
    }
}

2)、gzip压缩

1.1接口使用-数据压缩发送前端
java 复制代码
    @Autowired
    private GzipUtils gzipUtils;
    
    @RequestMapping(value = "testGzip", method = RequestMethod.POST)
    public JSONBeansResponse testGzip(@RequestBody Map<String, String> map) throws IOException {
        if (null != map) {
            String sqlStr = map.get("paramStr");
            // 调用数据库获取数据
            Map<String, Object> resMap = testMapper.findInfo(sqlStr);
            String dataStr = JSONObject.toJSONString(resMap);
            // 开始压缩数据
            byte[] compress1 = gzipUtils.compress(dataStr);
            String FileBuf = Base64.getEncoder().encodeToString(compress1);
            return new JSONBeansResponse<>(FileBuf);
        }
        return new JSONBeansResponse<>(new ArrayList<>(0));
    }
1.2 接口使用-数据解压来自前端来的压缩数据
java 复制代码
    @RequestMapping(value = "testUnGzip", method = RequestMethod.POST)
    public JSONBeansResponse testUnGzip(@RequestBody Map<String, String> map) throws IOException {
        if (null != map) {
            String dataStream = map.get("dataStream ");
            byte[] decode = Base64.getDecoder().decode(dataStream);
            byte[] compress1 = gzipUtils.uncompress(decode);
            String dataStr = new String(compress1);
            Map<String, Object> res = JSONObject.parseObject(dataStr, Map.class);
            return new JSONBeansResponse<>(res);
        }
        return new JSONBeansResponse<>(new ArrayList<>(0));
    }

遇到问题

解压时候报错:java.util.zip.ZipException: Not in GZIP format

解决方案:在转换为字符串时,一定要使用ISO-8859-1这样的单字节编码

java 复制代码
 public R getLikeKeys(HttpServletRequest request, HttpServletResponse response, String data)
    {
        String data = "xxxxxxxx"; // 前端传来的数据
        String data3=new String(data.getBytes(), StandardCharsets.ISO_8859_1);
	}
1.3 GzipUtils工具类
java 复制代码
package com.自己的包.util;
import org.springframework.stereotype.Component;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;
/**
 * @program: tool_java
 * @description:
 * @author: sfp
 * @create: 2021-11-30 14:33
 **/
@Component
public class GzipUtils {
    /**
     * 压缩
     *
     * @param data 数据流
     * @return 压缩数据流
     * @throws IOException 异常
     */
    public byte[] compress(byte[] data) throws IOException {
        if (data == null || data.length == 0) {
            return null;
        }
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        GZIPOutputStream gzip = new GZIPOutputStream(out);
        gzip.write(data);
        gzip.close();
        return out.toByteArray();
    }
    /**
     * 压缩
     *
     * @param str 需要压缩数据信息
     * @return 压缩数据流
     * @throws IOException 异常
     */
    public byte[] compress(String str) throws IOException {
        if (str == null || str.length() == 0) {
            return null;
        }
        return compress(str.getBytes(StandardCharsets.UTF_8));
    }
    /**
     * 解压
     *
     * @param data 欲解压数据流
     * @return 原数据流
     * @throws IOException 异常
     */
    public byte[] uncompress(byte[] data) throws IOException {
        if (data == null || data.length == 0) {
            return data;
        }
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        ByteArrayInputStream in = new ByteArrayInputStream(data);
        GZIPInputStream gunzip = new GZIPInputStream(in);
        byte[] buffer = new byte[1024];
        int n;
        while ((n = gunzip.read(buffer)) >= 0) {
            out.write(buffer, 0, n);
        }
        gunzip.close();
        in.close();
        return out.toByteArray();
    }
    /**
     * 解压
     *
     * @param str 欲解压数据字符串
     * @return 原数据
     * @throws IOException 异常
     */
    public String uncompress(String str) throws IOException {
        if (str == null || str.length() == 0) {
            return str;
        }
        byte[] data = uncompress(str.getBytes(StandardCharsets.ISO_8859_1));
        return new String(data);
    }
}

3)、前端压缩数据

引入pako库

首先,通过npm安装pako库:
npm install pako

如果你不使用npm,也可以通过CDN引入pako库:
<script src="https://cdnjs.cloudflare.com/ajax/libs/pako/2.0.4/pako.min.js"></script>

1.2 实现GzipUtils类

然后,在JavaScript中实现GzipUtils类:

js 复制代码
class GzipUtils {
    /**
     * 压缩
     *
     * @param {Uint8Array|ArrayBuffer} data 数据流
     * @return {Uint8Array} 压缩数据流
     */
    static compress(data) {
        if (!data || data.length === 0) {
            return null;
        }
        return pako.gzip(data);
    }

    /**
     * 压缩
     *
     * @param {string} str 需要压缩数据信息
     * @return {Uint8Array} 压缩数据流
     */
    static compressString(str) {
        if (!str || str.length === 0) {
            return null;
        }
        const utf8Data = new TextEncoder().encode(str);
        return this.compress(utf8Data);
    }

    /**
     * 解压
     *
     * @param {Uint8Array|ArrayBuffer} data 欲解压数据流
     * @return {Uint8Array} 原数据流
     */
    static uncompress(data) {
        if (!data || data.length === 0) {
            return data;
        }
        return pako.ungzip(data);
    }

    /**
     * 解压
     *
     * @param {string} str 欲解压数据字符串
     * @return {string} 原数据
     */
    static uncompressString(str) {
        if (!str || str.length === 0) {
            return str;
        }
        const compressedData = new Uint8Array([...str].map(char => char.charCodeAt(0)));
        const uncompressedData = this.uncompress(compressedData);
        return new TextDecoder().decode(uncompressedData);
    }
}
1.3 前端使用示例
js 复制代码
// 使用pako库,确保pako库已引入
// npm install pako
// 或者通过CDN引入 pako.min.js

// 压缩字符串
const originalString = "Hello, this is a string to be compressed.";
const compressedData = GzipUtils.compressString(originalString);
console.log("Compressed Data:", compressedData);

// 解压字符串
const decompressedString = GzipUtils.uncompressString(compressedData);
console.log("Decompressed String:", decompressedString);

// 确保解压后的字符串与原始字符串相同
console.assert(originalString === decompressedString, "Strings do not match!");

4)、zip压缩方案

接口使用-数据压缩发送前端
java 复制代码
    @Autowired
    private ZipUtils zipUtils;
    @RequestMapping(value = "testzip", method = RequestMethod.POST)
    public JSONBeansResponse testzip(@RequestBody Map<String, String> map) throws IOException {
        String sqlStr = map.get("paramStr");
        List<Map<String, Object>> resMap = testMapper.findInfo(sqlStr);;
        String dataStr = JSONObject.toJSONString(resMap);
        // 开始压缩数据
        byte[] compress1 = zipUtils.compress(dataStr);
        String FileBuf = Base64.getEncoder().encodeToString(compress1);
        // 开始解压数据
        String s = zipUtils.uncompress(FileBuf);
        List<Map> arrayLists = JSONObject.parseArray(s, Map.class);
        return new JSONBeansResponse<>(arrayLists);
    }
接口使用-数据解压来自前端来的压缩数据
ZipUtils工具类
java 复制代码
package com.自己的包.util;
import org.springframework.stereotype.Component;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;
import java.util.zip.ZipOutputStream;
/**
* @program: tool_java
* @description: zip压缩工具
* @author: sfp
* @create: 2021-12-01 14:11
**/
@Component
public class ZipUtils {
/** 压缩
    * @param data  原数据流
    * @return 压缩后的数据流
    * @throws IOException 异常
    */
   public byte[] compress(byte[] data) throws IOException {
       if (data == null || data.length == 0) {
           return null;
       }
       ByteArrayOutputStream out = new ByteArrayOutputStream();
       ZipOutputStream gzip = new ZipOutputStream(out);
       gzip.putNextEntry(new ZipEntry("json"));
       gzip.write(data);
       gzip.close();
       return out.toByteArray();
   }
   /** 压缩
    * @param str  原数据字符串
    * @return 压缩后的数据流
    * @throws IOException 异常
    */
   public byte[] compress(String str) throws IOException {
       if (str == null || str.length() == 0) {
           return null;
       }
       return compress(str.getBytes(StandardCharsets.UTF_8));
   }
   /** 解压缩
    * @param data  压缩后的数据流
    * @return 原数据的数据流
    * @throws IOException 异常
    */
   public byte[] uncompress(byte[] data) throws IOException {
       if (data == null || data.length == 0) {
           return data;
       }
       ByteArrayOutputStream out = new ByteArrayOutputStream();
       ByteArrayInputStream in = new ByteArrayInputStream(data);
       ZipInputStream gunzip = new ZipInputStream(in);
       ZipEntry nextEntry = gunzip.getNextEntry();
       while (nextEntry != null) {
           final String fileName = nextEntry.getName();
           if (nextEntry.isDirectory()) {
               nextEntry = gunzip.getNextEntry();
           } else if (fileName.equals("json")) {
               byte[] buffer = new byte[1024];
               int n;
               while ((n = gunzip.read(buffer)) >= 0) {
                   out.write(buffer, 0, n);
               }
               gunzip.close();
               in.close();
               return out.toByteArray();
           }
       }
       return out.toByteArray();
   }
   /** 解压
    * @param str  压缩后的base64流
    * @return 原数据字符串
    * @throws IOException 异常
    */
   public String uncompress(String str) throws IOException {
       if (str == null || str.length() == 0) {
           return str;
       }
       byte[] data = uncompress(Base64.getDecoder().decode(str));
       return new String(data);
   }
}
相关推荐
2301_811274319 分钟前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz987617 分钟前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交17 分钟前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
武子康20 分钟前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康22 分钟前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
时差95336 分钟前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋39 分钟前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客40 分钟前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
大数据编程之光43 分钟前
Flink入门介绍
大数据·flink
草莓base1 小时前
【手写一个spring】spring源码的简单实现--容器启动
java·后端·spring