一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
لا معنى له8 分钟前
学习笔记:卷积神经网络(CNN)
人工智能·笔记·深度学习·神经网络·学习·cnn
资源补给站8 分钟前
论文13 | Nature: 数据驱动的地球系统科学的深度学习和过程理解
人工智能·深度学习
金融小师妹11 分钟前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
222you12 分钟前
线程的常用方法
java·开发语言
一直都在57212 分钟前
数据结构入门:二叉排序树的构建与相关算法
数据结构·算法
云栖梦泽15 分钟前
易语言界面美化与组件扩展
开发语言
catchadmin16 分钟前
PHP 值对象实战指南:避免原始类型偏执
android·开发语言·php
yumgpkpm19 分钟前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
weixin_3954489120 分钟前
迁移后的主要升级点(TDA4 相对 TDA2)
人工智能·深度学习·机器学习
_Minato_22 分钟前
数据结构知识整理——复杂度的计算
数据结构·经验分享·笔记·算法·软考