一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
Y1rong2 小时前
C++ QT之记事本
开发语言·qt
吴佳浩4 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
Hcoco_me5 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏5 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力5 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
diegoXie5 小时前
Python / R 向量顺序分割与跨步分割
开发语言·python·r语言
程序员小白条5 小时前
0经验如何找实习?
java·开发语言·数据结构·数据库·链表
土星云SaturnCloud5 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
liulilittle5 小时前
C++ 浮点数封装。
linux·服务器·开发语言·前端·网络·数据库·c++
云雾J视界5 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理