一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
chxii2 小时前
5.go切片和map
开发语言·golang
RockLiu@8054 小时前
PlainUSR|LIA: 追求更快的卷积网络实现高效的超分辨率重建
网络·人工智能·超分辨率重建
技术干货贩卖机4 小时前
MATLAB绘图配色包说明
开发语言·matlab
蹦蹦跳跳真可爱5894 小时前
Python----计算机视觉处理(Opencv:直方图均衡化)
人工智能·python·opencv·计算机视觉
胡耀超4 小时前
7.模型选择与评估:构建科学的参数调优与性能评估体系——Python数据挖掘代码实践
开发语言·人工智能·python·机器学习·数据挖掘
沐墨专攻技术4 小时前
深入理解指针(4)(C语言版)
c语言·开发语言
ElseWhereR4 小时前
机器人能否回到原点 - 简单
c++·算法·leetcode
南屿欣风5 小时前
Go 语言中使用 Swagger 生成 API 文档及常见问题解决
开发语言·后端·golang
果冻人工智能5 小时前
课堂里的人工智能,或者说,狂野西部闯进了教育界
人工智能
my_realmy5 小时前
蓝桥杯真题_小蓝和小桥的讨论
java·python·算法·职场和发展·蓝桥杯·intellij-idea