一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
Want5952 分钟前
Python汤姆猫
开发语言·python
IT_Beijing_BIT15 分钟前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.82420 分钟前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
Larry_Yanan24 分钟前
QML学习笔记(五十)QML与C++交互:QML中单例C++对象
开发语言·c++·笔记·qt·学习·ui·交互
im_AMBER25 分钟前
算法笔记 09
c语言·数据结构·c++·笔记·学习·算法·排序算法
凯芸呢27 分钟前
Java中的数组(续)
java·开发语言·数据结构·算法·青少年编程·排序算法·idea
竹竹零34 分钟前
JacksonUtil--序列化与反序列化
java·开发语言·windows
张较瘦_36 分钟前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
寂静山林1 小时前
UVa 1030 Image Is Everything
算法
AI柠檬1 小时前
几种排序算法的实现和性能比较
数据结构·算法·c#·排序算法