一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
冰西瓜6003 分钟前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
黎雁·泠崖10 分钟前
Java常用类核心详解(一):Math 类超细讲解
java·开发语言
追随者永远是胜利者16 分钟前
(LeetCode-Hot100)15. 三数之和
java·算法·leetcode·职场和发展·go
模型时代30 分钟前
Claude AI 发现 500 个高危软件漏洞
人工智能
love530love1 小时前
【OpenClaw 本地实战 Ep.3】突破瓶颈:强制修改 openclaw.json 解锁 32k 上下文记忆
人工智能·windows·json·cuda·lm studio·openclaw·context length
懒惰成性的1 小时前
12.Java的异常
java·开发语言
-To be number.wan1 小时前
Python数据分析:时间序列数据分析
开发语言·python·数据分析
星爷AG I1 小时前
11-7 因果(AGI基础理论)
人工智能·agi
前路不黑暗@1 小时前
Java项目:Java脚手架项目的通用组件的封装(六)
java·开发语言·spring
EchoMind-Henry1 小时前
EchoMindBot_v1.0.0 发布了
人工智能·ai·ai agent 研发手记