一种非凸全变差正则化的信号降噪方法(以模拟信号和轴承振动信号为例,MATLAB)

以旋转机械振动信号为例,由于旋转机械运行中背景噪声较强,振动信号需要进行降噪处理。常用的小波阈值降噪会在信号的不连续处产生虚假的波峰和伪吉布森震荡,而奇异值分解SVD去噪容易产生虚假分量,全变差去噪则不会出现这样的情况,因此采用全变差降噪以达到更好的效果。全变差降噪的问题作为一个L1正则化问题,可以通过优化极小化方法进行求解,可以有效地去除振动信号中的强背景噪声,较好地体现出冲击的故障特征。

鉴于此,采用一种非凸全变差正则化的信号降噪方法对模拟信号和轴承振动信号进行验证,运行环境为MATLAB 2018A。

复制代码
clear


y = load('blocks_noisy.txt');   % load data
sigma = 0.5;


x_clean = load('blocks.txt');   % load data


N = length(y);
n = 1:N;


figure(1)
clf
plot(n, y, 'color', 'black', 'linewidth', 1)
title('Noisy signal');
ax = [0 length(y) -3 6];
axis(ax)
复制代码
clc;clear all
%轴承2_2,采样频率25600Hz,外圈故障特征频率因子3.083,转速2250/60Hz,外圈故障特征频率115.6125
%x1 = xlsread('Bearing2_2/161.xlsx');%重度故障
x1 = xlsread('Bearing2_2/60.xlsx');%早期故障
x1 =x1(:,1);x1=x1(1:10240*2)
x1 = x1-mean(x1);
fs = 25600;
N = length(x1);
t = 0:1/fs:(N-1)/fs;
figure
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = envspectrum(x1, fs);plot(fEnvInner, pEnvInner)
xlim([0 500]);ncomb = 20;helperPlotCombs(ncomb,115.6125);xlabel('Frequency(Hz)');ylabel('Ampitude')


y = x1;   %data
sigma = 0.5;
% x_clean = load('blocks.txt');   % load data
N = length(y);
n = 1:N;

完整代码可通过知乎学术咨询获得:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
yue0082 分钟前
C# 更改窗体样式
开发语言·c#
普通网友6 分钟前
C++中的适配器模式
开发语言·c++·算法
风闲12178 分钟前
Qt源码编译记录
开发语言·qt
普通网友29 分钟前
C++中的委托构造函数
开发语言·c++·算法
月上柳青43 分钟前
OpenWrt系统上配置batman-adv快速开始与配置详解
开发语言·mysql·php
全栈陈序员44 分钟前
基于Rust 实现的豆瓣电影 Top250 爬虫项目
开发语言·爬虫·rust
普通网友44 分钟前
C++中的代理模式实战
开发语言·c++·算法
百锦再1 小时前
第17章 模式与匹配
开发语言·后端·python·rust·django·内存·抽象
WangMing_X1 小时前
C# XML操作演示示例项目(附源码完整)
开发语言·microsoft·php
普通网友1 小时前
C++模块化设计原则
开发语言·c++·算法