scikit-learn超参数调优 (自动寻找模型最佳参数) 方法


  1. 网格搜索(Grid Search)

    • 原理:网格搜索通过预定义的参数组合进行穷举搜索,评估每一种参数组合的性能,选择性能最佳的参数组合。

    • 实现 :使用GridSearchCV类。

    • 示例代码

      python 复制代码
      from sklearn.model_selection import GridSearchCV
      from sklearn.svm import SVC
      
      param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
      grid_search = GridSearchCV(SVC(), param_grid, cv=5)
      grid_search.fit(X_train, y_train)
      print(grid_search.best_params_)
  2. 随机搜索(Randomized Search)

    • 原理:随机搜索在预定义的参数空间中随机选择参数组合进行评估,通常比网格搜索更快,特别是在参数空间较大时。

    • 实现 :使用RandomizedSearchCV类。

    • 示例代码

      python 复制代码
      from sklearn.model_selection import RandomizedSearchCV
      from sklearn.svm import SVC
      from scipy.stats import uniform
      
      param_dist = {'C': uniform(0.1, 10), 'kernel': ['linear', 'rbf']}
      random_search = RandomizedSearchCV(SVC(), param_dist, n_iter=10, cv=5)
      random_search.fit(X_train, y_train)
      print(random_search.best_params_)
  3. 贝叶斯优化(Bayesian Optimization)

    • 原理:贝叶斯优化通过构建一个代理模型(如高斯过程)来预测不同参数组合的性能,并选择最有希望的参数组合进行评估。

    • 实现 :可以使用skopt库中的BayesSearchCV类。

    • 示例代码

      python 复制代码
      from skopt import BayesSearchCV
      from sklearn.svm import SVC
      
      param_space = {'C': (0.1, 10), 'kernel': ['linear', 'rbf']}
      bayes_search = BayesSearchCV(SVC(), param_space, n_iter=10, cv=5)
      bayes_search.fit(X_train, y_train)
      print(bayes_search.best_params_)
  4. 遗传算法(Genetic Algorithms)

    • 原理:遗传算法模拟自然选择和遗传过程,通过交叉、变异等操作在参数空间中搜索最优解。

    • 实现 :可以使用deap库或其他遗传算法库。

    • 示例代码

      python 复制代码
      from deap import base, creator, tools, algorithms
      from sklearn.svm import SVC
      from sklearn.model_selection import cross_val_score
      
      def eval_params(params):
          model = SVC(**params)
          score = cross_val_score(model, X_train, y_train, cv=5).mean()
          return score,
      
      creator.create("FitnessMax", base.Fitness, weights=(1.0,))
      creator.create("Individual", list, fitness=creator.FitnessMax)
      
      toolbox = base.Toolbox()
      toolbox.register("attr_C", random.uniform, 0.1, 10)
      toolbox.register("attr_kernel", random.choice, ['linear', 'rbf'])
      toolbox.register("individual", tools.initCycle, creator.Individual,
                       (toolbox.attr_C, toolbox.attr_kernel), n=1)
      toolbox.register("population", tools.initRepeat, list, toolbox.individual)
      toolbox.register("evaluate", eval_params)
      toolbox.register("mate", tools.cxTwoPoint)
      toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
      toolbox.register("select", tools.selTournament, tournsize=3)
      
      population = toolbox.population(n=10)
      algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=10)
      best_individual = tools.selBest(population, 1)[0]
      print(best_individual)
相关推荐
强盛小灵通专卖员2 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
逆向菜鸟4 分钟前
【摧毁比特币】椭圆曲线象限细分求k-陈墨仙
python·算法
有梦想的攻城狮44 分钟前
Java 11中的Collections类详解
java·windows·python·java11·collections
前端小趴菜051 小时前
python - input()函数
python
程序员三藏1 小时前
Selenium+python自动化测试:解决无法启动IE浏览器及报错问题
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
瓦尔登湖5081 小时前
DAY 40 训练和测试的规范写法
python
计算机sci论文精选2 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
站大爷IP2 小时前
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
python
秋难降2 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
站大爷IP2 小时前
Python新手踩坑实录:这些错误你可能正在犯
python