scikit-learn超参数调优 (自动寻找模型最佳参数) 方法


  1. 网格搜索(Grid Search)

    • 原理:网格搜索通过预定义的参数组合进行穷举搜索,评估每一种参数组合的性能,选择性能最佳的参数组合。

    • 实现 :使用GridSearchCV类。

    • 示例代码

      python 复制代码
      from sklearn.model_selection import GridSearchCV
      from sklearn.svm import SVC
      
      param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
      grid_search = GridSearchCV(SVC(), param_grid, cv=5)
      grid_search.fit(X_train, y_train)
      print(grid_search.best_params_)
  2. 随机搜索(Randomized Search)

    • 原理:随机搜索在预定义的参数空间中随机选择参数组合进行评估,通常比网格搜索更快,特别是在参数空间较大时。

    • 实现 :使用RandomizedSearchCV类。

    • 示例代码

      python 复制代码
      from sklearn.model_selection import RandomizedSearchCV
      from sklearn.svm import SVC
      from scipy.stats import uniform
      
      param_dist = {'C': uniform(0.1, 10), 'kernel': ['linear', 'rbf']}
      random_search = RandomizedSearchCV(SVC(), param_dist, n_iter=10, cv=5)
      random_search.fit(X_train, y_train)
      print(random_search.best_params_)
  3. 贝叶斯优化(Bayesian Optimization)

    • 原理:贝叶斯优化通过构建一个代理模型(如高斯过程)来预测不同参数组合的性能,并选择最有希望的参数组合进行评估。

    • 实现 :可以使用skopt库中的BayesSearchCV类。

    • 示例代码

      python 复制代码
      from skopt import BayesSearchCV
      from sklearn.svm import SVC
      
      param_space = {'C': (0.1, 10), 'kernel': ['linear', 'rbf']}
      bayes_search = BayesSearchCV(SVC(), param_space, n_iter=10, cv=5)
      bayes_search.fit(X_train, y_train)
      print(bayes_search.best_params_)
  4. 遗传算法(Genetic Algorithms)

    • 原理:遗传算法模拟自然选择和遗传过程,通过交叉、变异等操作在参数空间中搜索最优解。

    • 实现 :可以使用deap库或其他遗传算法库。

    • 示例代码

      python 复制代码
      from deap import base, creator, tools, algorithms
      from sklearn.svm import SVC
      from sklearn.model_selection import cross_val_score
      
      def eval_params(params):
          model = SVC(**params)
          score = cross_val_score(model, X_train, y_train, cv=5).mean()
          return score,
      
      creator.create("FitnessMax", base.Fitness, weights=(1.0,))
      creator.create("Individual", list, fitness=creator.FitnessMax)
      
      toolbox = base.Toolbox()
      toolbox.register("attr_C", random.uniform, 0.1, 10)
      toolbox.register("attr_kernel", random.choice, ['linear', 'rbf'])
      toolbox.register("individual", tools.initCycle, creator.Individual,
                       (toolbox.attr_C, toolbox.attr_kernel), n=1)
      toolbox.register("population", tools.initRepeat, list, toolbox.individual)
      toolbox.register("evaluate", eval_params)
      toolbox.register("mate", tools.cxTwoPoint)
      toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.1)
      toolbox.register("select", tools.selTournament, tournsize=3)
      
      population = toolbox.population(n=10)
      algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=10)
      best_individual = tools.selBest(population, 1)[0]
      print(best_individual)
相关推荐
q5673152310 分钟前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀11 分钟前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆12 分钟前
数据采集之selenium模拟登录
python·selenium·测试工具
喵~来学编程啦19 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
狂奔solar1 小时前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE1 小时前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng2 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
努力的家伙是不讨厌的2 小时前
解析json导出csv或者直接入库
开发语言·python·json