Pandas 基础 —— 探索数据分析的第一步

引言

在数据科学的世界中,Pandas 以其强大的数据处理能力而成为分析工作的核心工具。本文将引导你走进 Pandas 的大门,从基础概念到数据清洗的实用技巧,为你的数据分析之路打下坚实的基础。

Pandas 简介

Pandas 是一个开源的 Python 数据分析库,提供了高效的数据结构和分析工具,适用于处理和分析结构化数据。它的核心优势在于其易用性、灵活性和高性能,特别是在处理大型数据集时。

环境设置

在开始使用 Pandas 之前,确保你的 Python 环境中已经安装了 Pandas 库。如果尚未安装,可以通过以下命令进行安装:

bash 复制代码
pip install pandas
数据导入

数据导入是数据分析的第一步。Pandas 提供了多种数据导入功能,支持从 CSV、Excel、SQL 数据库等不同来源导入数据。

  • 从 CSV 文件导入数据

    python 复制代码
    import pandas as pd
    df = pd.read_csv('data.csv')
    print(df.head())
  • 从 Excel 文件导入数据

    python 复制代码
    df_excel = pd.read_excel('data.xlsx')
  • 从 SQL 数据库导入数据

    python 复制代码
    import sqlite3
    conn = sqlite3.connect('database.db')
    df_sql = pd.read_sql_query("SELECT * FROM table_name", conn)
初步数据探索

在进行数据清洗之前,首先需要对数据有一个初步的了解。Pandas 提供了多种方法来查看和探索数据集。

  • 查看数据的前几行

    python 复制代码
    print(df.head())
  • 获取数据集的基本信息

    python 复制代码
    print(df.info())
  • 描述性统计

    python 复制代码
    print(df.describe())
数据清洗

数据清洗是数据分析中的重要环节,Pandas 提供了一系列功能来帮助我们处理缺失值、重复数据和异常值。

  • 处理缺失值

    • 删除含有缺失值的行:

      python 复制代码
      df_clean = df.dropna()
    • 填充缺失值,例如使用均值填充:

      python 复制代码
      df_filled = df.fillna({'Salary': df['Salary'].mean()})
  • 删除重复数据

    python 复制代码
    df_unique = df.drop_duplicates()
  • 选择数据列

    python 复制代码
    salary_data = df['Salary']
  • 数据类型转换

    python 复制代码
    df['Age'] = df['Age'].astype(int)
  • 条件过滤

    python 复制代码
    filtered_data = df[df['Salary'] > 50000]
结语

在本文中,我们学习了 Pandas 的基础概念、数据导入方法、数据探索技巧以及数据清洗的基本操作。这些是数据分析不可或缺的步骤,为后续的深入分析打下了坚实的基础。

相关推荐
麻雀无能为力5 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心5 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
胡耀超11 小时前
标签体系设计与管理:从理论基础到智能化实践的综合指南
人工智能·python·深度学习·数据挖掘·大模型·用户画像·语义分析
Triv202513 小时前
ECU开发工具链1.10版:更强大的测量、校准与数据分析体验.
microsoft·数据分析·汽车电子开发·校准流程自动化·高速信号采集·测试台架集成·实时数据监控
好开心啊没烦恼13 小时前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
会的全对٩(ˊᗜˋ*)و15 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
kngines15 小时前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
陈敬雷-充电了么-CEO兼CTO17 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
麻雀无能为力18 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机