Pandas 基础 —— 探索数据分析的第一步

引言

在数据科学的世界中,Pandas 以其强大的数据处理能力而成为分析工作的核心工具。本文将引导你走进 Pandas 的大门,从基础概念到数据清洗的实用技巧,为你的数据分析之路打下坚实的基础。

Pandas 简介

Pandas 是一个开源的 Python 数据分析库,提供了高效的数据结构和分析工具,适用于处理和分析结构化数据。它的核心优势在于其易用性、灵活性和高性能,特别是在处理大型数据集时。

环境设置

在开始使用 Pandas 之前,确保你的 Python 环境中已经安装了 Pandas 库。如果尚未安装,可以通过以下命令进行安装:

bash 复制代码
pip install pandas
数据导入

数据导入是数据分析的第一步。Pandas 提供了多种数据导入功能,支持从 CSV、Excel、SQL 数据库等不同来源导入数据。

  • 从 CSV 文件导入数据

    python 复制代码
    import pandas as pd
    df = pd.read_csv('data.csv')
    print(df.head())
  • 从 Excel 文件导入数据

    python 复制代码
    df_excel = pd.read_excel('data.xlsx')
  • 从 SQL 数据库导入数据

    python 复制代码
    import sqlite3
    conn = sqlite3.connect('database.db')
    df_sql = pd.read_sql_query("SELECT * FROM table_name", conn)
初步数据探索

在进行数据清洗之前,首先需要对数据有一个初步的了解。Pandas 提供了多种方法来查看和探索数据集。

  • 查看数据的前几行

    python 复制代码
    print(df.head())
  • 获取数据集的基本信息

    python 复制代码
    print(df.info())
  • 描述性统计

    python 复制代码
    print(df.describe())
数据清洗

数据清洗是数据分析中的重要环节,Pandas 提供了一系列功能来帮助我们处理缺失值、重复数据和异常值。

  • 处理缺失值

    • 删除含有缺失值的行:

      python 复制代码
      df_clean = df.dropna()
    • 填充缺失值,例如使用均值填充:

      python 复制代码
      df_filled = df.fillna({'Salary': df['Salary'].mean()})
  • 删除重复数据

    python 复制代码
    df_unique = df.drop_duplicates()
  • 选择数据列

    python 复制代码
    salary_data = df['Salary']
  • 数据类型转换

    python 复制代码
    df['Age'] = df['Age'].astype(int)
  • 条件过滤

    python 复制代码
    filtered_data = df[df['Salary'] > 50000]
结语

在本文中,我们学习了 Pandas 的基础概念、数据导入方法、数据探索技巧以及数据清洗的基本操作。这些是数据分析不可或缺的步骤,为后续的深入分析打下了坚实的基础。

相关推荐
青云交15 分钟前
Java 大视界 -- Java 大数据在元宇宙中的关键技术与应用场景(65)
大数据·数据分析·元宇宙·数据存储·实时处理·虚拟身份·虚拟经济
大数据魔法师19 分钟前
1905电影网中国地区电影数据分析(二) - 数据分析与可视化
python·数据分析
程序员阿龙2 小时前
【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测
人工智能·数据挖掘·数据分析与可视化·数据挖掘技术·人才市场预测·招聘信息分析·在线招聘平台
云天徽上16 小时前
【机器学习案列】探索各因素对睡眠时间影响的回归分析
人工智能·算法·机器学习·数据挖掘·数据分析·回归
m0_7482526018 小时前
爬虫基础之爬取某基金网站+数据分析
爬虫·数据挖掘·数据分析
星川皆无恙19 小时前
大数据k-means聚类算法:基于k-means聚类算法+NLP微博舆情数据爬虫可视化分析推荐系统
大数据·python·算法·自然语言处理·数据挖掘·kmeans·聚类
zoney hu1 天前
Python数据分析-准备工作(一)
python·数据分析
Ray.19981 天前
Flink底层架构与运行流程
大数据·数据分析·flink
幸运小新1 天前
华为数据之道-读书笔记
数据分析
Denodo1 天前
如何用数据编织、数据虚拟化与SQL-on-Hadoop打造实时、可扩展兼容的数据仓库?
大数据·数据仓库·hadoop·分布式·数据挖掘·数据分析·spark