Pandas 基础 —— 探索数据分析的第一步

引言

在数据科学的世界中,Pandas 以其强大的数据处理能力而成为分析工作的核心工具。本文将引导你走进 Pandas 的大门,从基础概念到数据清洗的实用技巧,为你的数据分析之路打下坚实的基础。

Pandas 简介

Pandas 是一个开源的 Python 数据分析库,提供了高效的数据结构和分析工具,适用于处理和分析结构化数据。它的核心优势在于其易用性、灵活性和高性能,特别是在处理大型数据集时。

环境设置

在开始使用 Pandas 之前,确保你的 Python 环境中已经安装了 Pandas 库。如果尚未安装,可以通过以下命令进行安装:

bash 复制代码
pip install pandas
数据导入

数据导入是数据分析的第一步。Pandas 提供了多种数据导入功能,支持从 CSV、Excel、SQL 数据库等不同来源导入数据。

  • 从 CSV 文件导入数据

    python 复制代码
    import pandas as pd
    df = pd.read_csv('data.csv')
    print(df.head())
  • 从 Excel 文件导入数据

    python 复制代码
    df_excel = pd.read_excel('data.xlsx')
  • 从 SQL 数据库导入数据

    python 复制代码
    import sqlite3
    conn = sqlite3.connect('database.db')
    df_sql = pd.read_sql_query("SELECT * FROM table_name", conn)
初步数据探索

在进行数据清洗之前,首先需要对数据有一个初步的了解。Pandas 提供了多种方法来查看和探索数据集。

  • 查看数据的前几行

    python 复制代码
    print(df.head())
  • 获取数据集的基本信息

    python 复制代码
    print(df.info())
  • 描述性统计

    python 复制代码
    print(df.describe())
数据清洗

数据清洗是数据分析中的重要环节,Pandas 提供了一系列功能来帮助我们处理缺失值、重复数据和异常值。

  • 处理缺失值

    • 删除含有缺失值的行:

      python 复制代码
      df_clean = df.dropna()
    • 填充缺失值,例如使用均值填充:

      python 复制代码
      df_filled = df.fillna({'Salary': df['Salary'].mean()})
  • 删除重复数据

    python 复制代码
    df_unique = df.drop_duplicates()
  • 选择数据列

    python 复制代码
    salary_data = df['Salary']
  • 数据类型转换

    python 复制代码
    df['Age'] = df['Age'].astype(int)
  • 条件过滤

    python 复制代码
    filtered_data = df[df['Salary'] > 50000]
结语

在本文中,我们学习了 Pandas 的基础概念、数据导入方法、数据探索技巧以及数据清洗的基本操作。这些是数据分析不可或缺的步骤,为后续的深入分析打下了坚实的基础。

相关推荐
Christo39 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
用户Taobaoapi201414 小时前
京东店铺所有商品API技术开发文档
大数据·数据挖掘·数据分析
总有刁民想爱朕ha15 小时前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
Stestack17 小时前
人工智能常见分类
人工智能·分类·数据挖掘
华科云商xiao徐20 小时前
告别IP被封!分布式爬虫的“隐身”与“分身”术
爬虫·数据挖掘·数据分析
CodeCraft Studio21 小时前
Excel处理控件Aspose.Cells教程:使用 Python 将 Pandas DataFrame 转换为 Excel
python·json·excel·pandas·csv·aspose·dataframe
njxiejing1 天前
Pandas数据结构(DataFrame,字典赋值)
数据结构·人工智能·pandas
未来之窗软件服务1 天前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
没有梦想的咸鱼185-1037-16631 天前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
民乐团扒谱机1 天前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享