基于opencv-python开发的长度测量-角度测量算法

使用OpenCV-Python进行长度和角度测量的项目可以应用于多个领域,如工业自动化、机器人视觉、测绘、教育等。这类项目的核心是利用计算机视觉技术从图像或视频中提取有用的信息,进而计算出物体的尺寸或角度。以下是一个基于OpenCV-Python进行长度和角度测量的基本框架:

1. 图像预处理

  • 读取图像 :使用cv2.imread()函数读取图像。
  • 灰度转换 :将彩色图像转换为灰度图像,以便后续处理。使用cv2.cvtColor()函数。
  • 二值化 :通过阈值处理将图像转换为黑白图像,以突出目标对象。使用cv2.threshold()cv2.adaptiveThreshold()
  • 边缘检测 :使用Canny边缘检测算法来找到图像中的边界线。使用cv2.Canny()函数。
  • 形态学操作 :使用膨胀和腐蚀操作去除噪声并细化边缘。使用cv2.dilate()cv2.erode()

2. 物体检测与轮廓提取

  • 轮廓检测 :使用cv2.findContours()函数检测图像中的轮廓。
  • 轮廓筛选:根据面积、周长或形状特征筛选出感兴趣的物体轮廓。

3. 长度和角度测量

  • 长度测量 :对于选定的轮廓,可以通过计算轮廓的最长直径或特定点之间的距离来估计长度。使用cv2.minEnclosingCircle()cv2.arcLength()cv2.approxPolyDP()来简化轮廓。
  • 角度测量 :使用cv2.minAreaRect()找到最小面积的矩形包围轮廓,然后计算矩形的角度。或者,使用Hough变换找到直线,然后计算这些直线之间的角度。

4. 结果可视化

  • 使用cv2.drawContours()绘制轮廓。
  • 使用cv2.line()cv2.putText()显示测量结果。
  • 最后,使用cv2.imshow()展示处理后的图像。

5. 实际应用考虑

  • 标定:为了将像素单位转换为现实世界中的单位(如毫米),需要进行相机标定。
  • 误差分析:考虑到图像分辨率、光照条件、相机位置等因素,测量结果会有一定的误差。
  • 实时处理:如果项目要求实时测量,那么需要优化代码以提高处理速度。

这只是一个基本的框架,实际项目可能需要根据具体需求进行调整和优化。例如,对于复杂的场景,可能需要使用更高级的图像处理技术,如深度学习方法来识别和测量物体。

运行结果如下:

使用方法:

替换下面参数即可:

注意事项:

必须有一个最小面积的矩形提供长度参考,在main里面的W,H参数也是这个参考的长度(默认单位为cm) 如果没有最小矩形面积会报错 下版本优化

相关推荐
豆豆9 分钟前
day32 学习笔记
图像处理·笔记·opencv·学习·计算机视觉
逢生博客18 分钟前
使用 Python 项目管理工具 uv 快速创建 MCP 服务(Cherry Studio、Trae 添加 MCP 服务)
python·sqlite·uv·deepseek·trae·cherry studio·mcp服务
堕落似梦25 分钟前
Pydantic增强SQLALchemy序列化(FastAPI直接输出SQLALchemy查询集)
python
黄昏ivi42 分钟前
电力系统最小惯性常数解析
算法
独家回忆3641 小时前
每日算法-250425
算法
烁3471 小时前
每日一题(小白)模拟娱乐篇33
java·开发语言·算法
坐吃山猪1 小时前
Python-Agent调用多个Server-FastAPI版本
开发语言·python·fastapi
Demons_kirit2 小时前
LeetCode 2799、2840题解
算法·leetcode·职场和发展
软行2 小时前
LeetCode 每日一题 2845. 统计趣味子数组的数目
数据结构·c++·算法·leetcode
永远在Debug的小殿下2 小时前
查找函数【C++】
数据结构·算法