基于opencv-python开发的长度测量-角度测量算法

使用OpenCV-Python进行长度和角度测量的项目可以应用于多个领域,如工业自动化、机器人视觉、测绘、教育等。这类项目的核心是利用计算机视觉技术从图像或视频中提取有用的信息,进而计算出物体的尺寸或角度。以下是一个基于OpenCV-Python进行长度和角度测量的基本框架:

1. 图像预处理

  • 读取图像 :使用cv2.imread()函数读取图像。
  • 灰度转换 :将彩色图像转换为灰度图像,以便后续处理。使用cv2.cvtColor()函数。
  • 二值化 :通过阈值处理将图像转换为黑白图像,以突出目标对象。使用cv2.threshold()cv2.adaptiveThreshold()
  • 边缘检测 :使用Canny边缘检测算法来找到图像中的边界线。使用cv2.Canny()函数。
  • 形态学操作 :使用膨胀和腐蚀操作去除噪声并细化边缘。使用cv2.dilate()cv2.erode()

2. 物体检测与轮廓提取

  • 轮廓检测 :使用cv2.findContours()函数检测图像中的轮廓。
  • 轮廓筛选:根据面积、周长或形状特征筛选出感兴趣的物体轮廓。

3. 长度和角度测量

  • 长度测量 :对于选定的轮廓,可以通过计算轮廓的最长直径或特定点之间的距离来估计长度。使用cv2.minEnclosingCircle()cv2.arcLength()cv2.approxPolyDP()来简化轮廓。
  • 角度测量 :使用cv2.minAreaRect()找到最小面积的矩形包围轮廓,然后计算矩形的角度。或者,使用Hough变换找到直线,然后计算这些直线之间的角度。

4. 结果可视化

  • 使用cv2.drawContours()绘制轮廓。
  • 使用cv2.line()cv2.putText()显示测量结果。
  • 最后,使用cv2.imshow()展示处理后的图像。

5. 实际应用考虑

  • 标定:为了将像素单位转换为现实世界中的单位(如毫米),需要进行相机标定。
  • 误差分析:考虑到图像分辨率、光照条件、相机位置等因素,测量结果会有一定的误差。
  • 实时处理:如果项目要求实时测量,那么需要优化代码以提高处理速度。

这只是一个基本的框架,实际项目可能需要根据具体需求进行调整和优化。例如,对于复杂的场景,可能需要使用更高级的图像处理技术,如深度学习方法来识别和测量物体。

运行结果如下:

使用方法:

替换下面参数即可:

注意事项:

必须有一个最小面积的矩形提供长度参考,在main里面的W,H参数也是这个参考的长度(默认单位为cm) 如果没有最小矩形面积会报错 下版本优化

相关推荐
yaoh.wang几秒前
力扣(LeetCode) 28: 找出字符串中第一个匹配项的下标 - 解法思
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
flashlight_hi几秒前
LeetCode 分类刷题:101. 对称二叉树
javascript·算法·leetcode
yaoh.wang1 分钟前
力扣(LeetCode) 35: 搜索插入位置 - 解法思路
程序人生·算法·leetcode·面试·职场和发展·跳槽·二分搜索
手揽回忆怎么睡4 分钟前
win11灵活控制Python版本,使用pyenv-win
开发语言·python
唯唯qwe-5 分钟前
Day20:贪心算法,跳跃游戏
python·算法·贪心算法
@淡 定6 分钟前
动态代理(JDK动态代理/CGLIB动态代理
java·开发语言·python
laocooon5238578866 分钟前
背包问题~~!C++
开发语言·c++·算法
mit6.8247 分钟前
博弈论nim^|sg函数|涂色dp
算法
破烂pan7 分钟前
Python 整合 Redis 哨兵(Sentinel)与集群(Cluster)实战指南
redis·python·sentinel
CoovallyAIHub15 分钟前
复杂工业场景如何实现3D实例与部件一体化分割?多视角贝叶斯融合的分层图像引导框架
深度学习·算法·计算机视觉