保险问答系统提前特征,插入milvus

import os

import sys

from tqdm import tqdm

import numpy as np

from scipy.special import softmax

import paddle

from paddle import inference

from paddlenlp.transformers import AutoTokenizer

from paddlenlp.data import Stack, Tuple, Pad

from paddlenlp.utils.log import logger

import paddle.nn as nn

class SimCSE(nn.Layer):

def init(self,

pretrained_model,

dropout=None,

margin=0.0,

scale=20,

output_emb_size=None):

super().init()

self.ptm = pretrained_model

self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)

self.output_emb_size = output_emb_size

if output_emb_size > 0:

weight_attr = paddle.ParamAttr(

initializer=paddle.nn.initializer.TruncatedNormal(std=0.02))

self.emb_reduce_linear = paddle.nn.Linear(768,

output_emb_size,

weight_attr=weight_attr)

self.margin = margin

self.sacle = scale

self.classifier = nn.Linear(output_emb_size, 2)

self.rdrop_loss = paddlenlp.losses.RDropLoss()

@paddle.jit.to_static(input_spec=[

paddle.static.InputSpec(shape=[None, None], dtype='int64'),

paddle.static.InputSpec(shape=[None, None], dtype='int64')

])

def get_pooled_embedding(self,

input_ids,

token_type_ids=None,

position_ids=None,

attention_mask=None,

with_pooler=True):

sequence_output, cls_embedding = self.ptm(input_ids, token_type_ids,

position_ids, attention_mask)

if with_pooler == False:

cls_embedding = sequence_output[:, 0, :]

if self.output_emb_size > 0:

cls_embedding = self.emb_reduce_linear(cls_embedding)

cls_embedding = self.dropout(cls_embedding)

cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)

return cls_embedding

def get_semantic_embedding(self, data_loader):

self.eval()

with paddle.no_grad():

for batch_data in data_loader:

input_ids, token_type_ids = batch_data

text_embeddings = self.get_pooled_embedding(

input_ids, token_type_ids=token_type_ids)

yield text_embeddings

def cosine_sim(self,

query_input_ids,

title_input_ids,

query_token_type_ids=None,

query_position_ids=None,

query_attention_mask=None,

title_token_type_ids=None,

title_position_ids=None,

title_attention_mask=None,

with_pooler=True):

query_cls_embedding = self.get_pooled_embedding(query_input_ids,

query_token_type_ids,

query_position_ids,

query_attention_mask,

with_pooler=with_pooler)

title_cls_embedding = self.get_pooled_embedding(title_input_ids,

title_token_type_ids,

title_position_ids,

title_attention_mask,

with_pooler=with_pooler)

cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding,

axis=-1)

return cosine_sim

def forward(self,

query_input_ids,

title_input_ids,

query_token_type_ids=None,

query_position_ids=None,

query_attention_mask=None,

title_token_type_ids=None,

title_position_ids=None,

title_attention_mask=None):

query_cls_embedding = self.get_pooled_embedding(query_input_ids,

query_token_type_ids,

query_position_ids,

query_attention_mask)

title_cls_embedding = self.get_pooled_embedding(title_input_ids,

title_token_type_ids,

title_position_ids,

title_attention_mask)

logits1 = self.classifier(query_cls_embedding)

logits2 = self.classifier(title_cls_embedding)

kl_loss = self.rdrop_loss(logits1, logits2)

cosine_sim = paddle.matmul(query_cls_embedding,

title_cls_embedding,

transpose_y=True)

margin_diag = paddle.full(shape=[query_cls_embedding.shape[0]],

fill_value=self.margin,

dtype=paddle.get_default_dtype())

cosine_sim = cosine_sim - paddle.diag(margin_diag)

cosine_sim *= self.sacle

labels = paddle.arange(0, query_cls_embedding.shape[0], dtype='int64')

labels = paddle.reshape(labels, shape=[-1, 1])

loss = F.cross_entropy(input=cosine_sim, label=labels)

return loss, kl_loss

def convert_example(example,

tokenizer,

max_seq_length=512,

pad_to_max_seq_len=False):

result = []

for key, text in example.items():

encoded_inputs = tokenizer(text=text,

max_seq_len=max_seq_length,

pad_to_max_seq_len=pad_to_max_seq_len)

input_ids = encoded_inputs["input_ids"]

token_type_ids = encoded_inputs["token_type_ids"]

result += [input_ids, token_type_ids]

return result

model_dir='./output/bxqa/'

corpus_file='./datasets/bxqa/corpus.csv'

max_seq_length=64

batch_size=32

device='gpu'

class Predictor(object):

def init(self,

model_dir,

device="gpu",

max_seq_length=128,

batch_size=32,

use_tensorrt=False,

precision="fp32",

cpu_threads=10,

enable_mkldnn=False):

self.max_seq_length = max_seq_length

self.batch_size = batch_size

model_file = model_dir + "inference.get_pooled_embedding.pdmodel"

params_file = model_dir + "inference.get_pooled_embedding.pdiparams"

if not os.path.exists(model_file):

raise ValueError("not find model file path {}".format(model_file))

if not os.path.exists(params_file):

raise ValueError("not find params file path {}".format(params_file))

config = paddle.inference.Config(model_file, params_file)

if device == "gpu":

config.enable_use_gpu(100, 0)

precision_map = {

"fp16": inference.PrecisionType.Half,

"fp32": inference.PrecisionType.Float32,

"int8": inference.PrecisionType.Int8

}

precision_mode = precision_map[precision]

if use_tensorrt:

config.enable_tensorrt_engine(max_batch_size=batch_size,

min_subgraph_size=30,

precision_mode=precision_mode)

elif device == "cpu":

config.disable_gpu()

if args.enable_mkldnn:

cache 10 different shapes for mkldnn to avoid memory leak

config.set_mkldnn_cache_capacity(10)

config.enable_mkldnn()

config.set_cpu_math_library_num_threads(args.cpu_threads)

elif device == "xpu":

config.enable_xpu(100)

config.switch_use_feed_fetch_ops(False)

self.predictor = paddle.inference.create_predictor(config)

self.input_handles = [

self.predictor.get_input_handle(name)

for name in self.predictor.get_input_names()

]

self.output_handle = self.predictor.get_output_handle(

self.predictor.get_output_names()[0])

def predict(self, data, tokenizer):

batchify_fn = lambda samples, fn=Tuple(

Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype='int64'), # input

Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype='int64'

), # segment

): fn(samples)

all_embeddings = []#存放所有数据

examples = []#用来临时存放一个批次数据

for idx, text in enumerate(tqdm(data)):

input_ids, segment_ids = convert_example(

text,

tokenizer,

max_seq_length=self.max_seq_length,

pad_to_max_seq_len=True)

examples.append((input_ids, segment_ids))

if (len(examples) >= self.batch_size):#够一个批次就做下面的事

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

examples = []

if (len(examples) > 0):#处理最后一个批次数据

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

all_embeddings = np.concatenate(all_embeddings, axis=0)

np.save('bxqa_corpus_embedding', all_embeddings)

def read_text(file_path):

file = open(file_path)

id2corpus = {}

for idx, data in enumerate(file.readlines()):

id2corpus[idx] = data.strip()

return id2corpus

predictor = Predictor(model_dir, device, max_seq_length,

batch_size)

tokenizer = AutoTokenizer.from_pretrained('ernie-3.0-medium-zh')

id2corpus = read_text(corpus_file)

corpus_list = [{idx: text} for idx, text in id2corpus.items()]

predictor.predict(corpus_list, tokenizer)

from pymilvus import *

import pymilvus

MILVUS_HOST = '127.0.0.1'

MILVUS_PORT =19530

data_dim = 256

top_k = 10

collection_name = 'bxqa'

partition_tag = 'partition_1'

embedding_name = 'embeddings'

index_config = {

"index_type": "IVF_FLAT",

"metric_type": "L2",

"params": {

"nlist": 500

},

}

search_params = {

"metric_type": "L2",

"params": {

"nprobe": 20

},

}

fmt = "\n=== {:30} ===\n"

text_max_len = 1000

fields = [

FieldSchema(name="pk",

dtype=DataType.INT64,

is_primary=True,

auto_id=False,

max_length=100),

FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=text_max_len),

FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=data_dim)

]

schema = CollectionSchema(fields, "bxqa Index")

class VecToMilvus():

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def has_collection(self, collection_name):

try:

has = utility.has_collection(collection_name)

print(f"Does collection {collection_name} exist in Milvus: {has}")

return has

except Exception as e:

print("Milvus has_table error:", e)

def creat_collection(self, collection_name):

try:

print(fmt.format("Create collection {}".format(collection_name)))

self.collection = Collection(collection_name,

schema,

consistency_level="Strong")

except Exception as e:

print("Milvus create collection error:", e)

def drop_collection(self, collection_name):

try:

utility.drop_collection(collection_name)

except Exception as e:

print("Milvus delete collection error:", e)

def create_index(self, index_name):

try:

print(fmt.format("Start Creating index"))

self.collection.create_index(index_name, index_config)

print(fmt.format("Start loading"))

self.collection.load()

except Exception as e:

print("Milvus create index error:", e)

def has_partition(self, partition_tag):

try:

result = self.collection.has_partition(partition_tag)

return result

except Exception as e:

print("Milvus has partition error: ", e)

def create_partition(self, partition_tag):

try:

self.collection.create_partition(partition_tag)

print('create partition {} successfully'.format(partition_tag))

except Exception as e:

print('Milvus create partition error: ', e)

def insert(self, entities, collection_name, index_name, partition_tag=None):

try:

if not self.has_collection(collection_name):#没有集合就创建

self.creat_collection(collection_name)

self.create_index(index_name)

else:

self.collection = Collection(collection_name)

if (partition_tag #没有分区就创建

is not None) and (not self.has_partition(partition_tag)):

self.create_partition(partition_tag)

self.collection.insert(entities, partition_name=partition_tag)

print(

f"Number of entities in Milvus: {self.collection.num_entities}"

) # check the num_entites

except Exception as e:

print("Milvus insert error:", e)

embeddings = np.load('bxqa_corpus_embedding.npy')

embedding_ids = [i for i in range(embeddings.shape[0])]

client = VecToMilvus()

collection_name = 'faq_finance'

client.has_collection(collection_name)

partition_tag = 'partition_1'

data_size = len(embedding_ids)

corpus_list=[list(i.values())[0] for i in corpus_list]

batch_size = 10000

for i in tqdm(range(0, data_size, batch_size)):

cur_end = i + batch_size

if (cur_end > data_size):

cur_end = data_size

batch_emb = embeddings[np.arange(i, cur_end)]

entities = [

j for j in range(i, cur_end, 1)\], \[corpus_list\[j\]\[:text_max_len - 1\] for j in range(i, cur_end, 1)\], batch_emb # field embeddings, supports numpy.ndarray and list

client.insert(collection_name=collection_name,

entities=entities,

index_name=embedding_name,

partition_tag=partition_tag)

相关推荐
IMER SIMPLE4 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
UQI-LIUWJ6 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL6 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
北京地铁1号线7 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch7 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan79 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
知来者逆12 小时前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
cyyt12 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max50060012 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
西猫雷婶15 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论