STM32-PWR和WDG看门狗

本内容基于江协科技STM32视频学习之后整理而得。

文章目录

  • [1. PWR](#1. PWR)
    • [1.1 PWR简介](#1.1 PWR简介)
    • [1.2 电源框图](#1.2 电源框图)
    • [1.3 上电复位和掉电复位](#1.3 上电复位和掉电复位)
    • [1.4 可编程电压监测器](#1.4 可编程电压监测器)
    • [1.5 低功耗模式](#1.5 低功耗模式)
    • [1.6 模式选择](#1.6 模式选择)
    • [1.7 睡眠模式](#1.7 睡眠模式)
    • [1.8 停止模式](#1.8 停止模式)
    • [1.9 待机模式](#1.9 待机模式)
    • [1.10 库函数](#1.10 库函数)
  • [2. WDG看门狗](#2. WDG看门狗)
    • [2.1 WDG简介](#2.1 WDG简介)
    • [2.2 IWDG框图](#2.2 IWDG框图)
    • [2.3 IWDG键寄存器](#2.3 IWDG键寄存器)
    • [2.4 IWDG超时时间](#2.4 IWDG超时时间)
    • [2.5 WWDG框图](#2.5 WWDG框图)
    • [2.6 WWDG工作特性](#2.6 WWDG工作特性)
    • [2.7 WWDG超时时间](#2.7 WWDG超时时间)
    • [2.8 IWDG和WWDG对比](#2.8 IWDG和WWDG对比)
    • [2.9 独立看门狗库函数](#2.9 独立看门狗库函数)
    • [2.10 窗口看门狗库函数](#2.10 窗口看门狗库函数)

1. PWR

1.1 PWR简介

  • PWR(Power Control)电源控制
  • PWR负责管理STM32内部的电源供电部分,可以实现可编程电压监测器和低功耗模式的功能
  • 可编程电压监测器(PVD)可以监控VDD电源电压,当VDD下降到PVD阀值以下或上升到PVD阀值之上时,PVD会触发中断,用于执行紧急关闭任务
  • 低功耗模式包括睡眠模式(Sleep)、停机模式(Stop)和待机模式(Standby),可在系统空闲时,降低STM32的功耗,延长设备使用时间

1.2 电源框图

  • 上面是模拟部分供电:包括AD转换器、温度传感器、复位模块、PLL锁相环。供电正极是VDDA,负极是VSSA。AD转换器还有两个参考电压的引脚VREF+和VREF-。
  • 中间是数字部分供电,包括VDD供电区域和1.8V供电区域。VDD供电区域包括I/O电路、待机电路(唤醒逻辑、IWDG),右边是VDD通过电压调节器降压到1.8V。1.8V供电区域包括CPU核心、存储器和内置数字外设。
  • 下面是后备供电VBAT,包括LSE_32K晶体振荡器、后备寄存器、RCC_BDCR寄存器(是RCC的寄存器,叫做备份域控制寄存器)、RTC

1.3 上电复位和掉电复位

当VDD、VDDA电压过低时,内部电路直接产生复位,让STM32复位住,不要乱操作。在复位与不复位之间设置了一个40mV迟滞电压,大于上限POR时解除复位,小于下限PDR时复位。设置两个阈值的作用,

就是防止电压在某个阈值附近波动时,造成输出也来回抖动。复位信号Reset是低电平有效的,所以在前面和后面,电压过低时,是复位的。

中间电压正常的时候,不复位。

1.4 可编程电压监测器

与上电复位和掉电复位差不多。但首先它的这个阈值电压是可以使用程序指定的,可以自定义调节。

1.5 低功耗模式

  • 睡眠模式通过WFI和WFE就可进入,WFI和WFE是内核的指令。
    • WFI(Wait For Interrupt)等待中断。唤醒条件是任一中断,通过WFI指令进入睡眠模式,当任何外设发生任何中断时,芯片就会立刻醒来,醒来后就是处理中断函数。
    • WFE(Wait For Event)等待事件,唤醒条件是唤醒事件,该事件可以是外部中断配置为事件模式,也可以是使能了中断,但没有配置NVIC。调用WFE进入的睡眠模式,产生唤醒事件时,会立刻醒来,醒来之后,一般不需要进中断函数,直接从睡的地方继续运行。
    • 睡眠模式对电路的影响是:只把CPU时钟关了,对其他电路没有任何操作。CPU时钟关了,程序就会暂停,不会继续运行了。CPU 不运行,芯片功耗就会降低。关闭电路一般有两个做法:一个是关闭时钟,另一个是关闭电源。关闭时钟,所有的运算和涉及时序的操作都会暂停。但寄存器和存储器里保存的数据还可以维持,不会消失。关闭电源,就是电路直接断电。电路的操作和数据会直接丢失。所以关闭电源比关闭时钟更省电。
  • 停机模式:SLEEPDEEP设置为1,即将深度睡眠。
    • PDDS是用来区分是停机模式还是待机模式,PDDS=0进入停机模式,PDDS=1进入待机模式,LPDS用来设置电压调节器,LPDS=0开启,LPDS=1进入低功耗模式。再调用WFI或WFE,芯片就进入停止模式了。任一外部中断唤醒。PVD、TRC闹钟、USB唤醒、ETH唤醒借道了外部中断,这4个信号也可以唤醒停止模式。
    • 对时钟的影响:CPU、定时器、串口都会停止运行,但由于没有关闭电源,所以CPU和外设的寄存器数据都是维持原状的。HSI和HSE的振荡器关闭。
  • 待机模式:SLEEPDEEP置1,PDDS=1,再调用WFI或WFE,芯片就进入待机模式了。
    • 普通外设的中断和外部中断都无法唤醒待机模式,只有:WKUP引脚的上升沿、RTC闹钟事件、NRST引脚上的外部复位、IWDG复位。把能关的全关了,只保留几个唤醒的功能。

1.6 模式选择

  • 执行WFI(Wait For Interrupt)或者WFE(Wait For Event)指令后,STM32进入低功耗模式

1.7 睡眠模式

  • 执行完WFI/WFE指令后,STM32进入睡眠模式,程序暂停运行,唤醒后程序从暂停的地方继续运行
  • SLEEPONEXIT位决定STM32执行完WFI或WFE后,是立刻进入睡眠,还是等STM32从最低优先级的中断处理程序中退出时进入睡眠
  • 在睡眠模式下,所有的I/O引脚都保持它们在运行模式时的状态
  • WFI指令进入睡眠模式,可被任意一个NVIC响应的中断唤醒
  • WFE指令进入睡眠模式,可被唤醒事件唤醒

1.8 停止模式

  • 执行完WFI/WFE指令后,STM32进入停止模式,程序暂停运行,唤醒后程序从暂停的地方继续运行
  • 1.8V供电区域的所有时钟都被停止,PLL、HSI和HSE被禁止,SRAM和寄存器内容被保留下来
  • 在停止模式下,所有的I/O引脚都保持它们在运行模式时的状态
  • 当一个中断或唤醒事件导致退出停止模式时,HSI被选为系统时钟
  • 当电压调节器处于低功耗模式下,系统从停止模式退出时,会有一段额外的启动延时
  • WFI指令进入停止模式,可被任意一个EXTI中断唤醒
  • WFE指令进入停止模式,可被任意一个EXTI事件唤醒

1.9 待机模式

  • 执行完WFI/WFE指令后,STM32进入待机模式,唤醒后程序从头开始运行
  • 整个1.8V供电区域被断电,PLL、HSI和HSE也被断电,SRAM和寄存器内容丢失,只有备份的寄存器和待机电路维持供电
  • 在待机模式下,所有的I/O引脚变为高阻态(浮空输入)
  • WKUP引脚的上升沿、RTC闹钟事件的上升沿、NRST引脚上外部复位、IWDG复位退出待机模式

1.10 库函数

c 复制代码
// 恢复缺省配置
void PWR_DeInit(void);
// 使能后备区域的访问
void PWR_BackupAccessCmd(FunctionalState NewState);
// 使能PVD
void PWR_PVDCmd(FunctionalState NewState);
// 配置PVD的阈值电压
void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel);
// 使能位于PA0位置的WKUP引脚,配合待机模式使用
void PWR_WakeUpPinCmd(FunctionalState NewState);
// 进入停止模式
void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry);
// 进入待机模式
void PWR_EnterSTANDBYMode(void);

FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG);
void PWR_ClearFlag(uint32_t PWR_FLAG);

2. WDG看门狗

2.1 WDG简介

  • WDG(Watchdog)看门狗
  • 看门狗可以监控程序的运行状态,当程序因为设计漏洞、硬件故障、电磁干扰等原因,出现卡死或跑飞现象时,看门狗能及时复位程序,避免程序陷入长时间的罢工状态,保证系统的可靠性和安全性
  • 看门狗本质上是一个定时器,当指定时间范围内,程序没有执行喂狗(重置计数器)操作时,看门狗硬件电路就自动产生复位信号
  • STM32内置两个看门狗
    • 独立看门狗(IWDG):独立工作,对时间精度要求较低
    • 窗口看门狗(WWDG):要求看门狗在精确计时窗口起作用

2.2 IWDG框图

预分频器的输入时钟是LSI(内部低速时钟),时钟频率是40kHz。之后,时钟进入预分频器进行分频,预分频器只有8位,最大只能进行256分频。预分频寄存器IWDG_PR,可以配置分频系数。经过预分频器进行分频之后,时钟驱动递减计数器,每来一个时钟,自减一个数,递减计数器是12位的,所以最大值是2^12-1=4095,当自减到0之后,产生IWDG复位。为了避免提前复位,可以提前在重装寄存器写一个值,IWDG_RLR和定时器的ARR一样,预先写好值之后,在键寄存器里写一个特定数据,控制电路,进行喂狗,这时重装值就会复制到当前的计数器中,这样计数器就会回到重装值,重新自减运行了。

状态寄存器SR:标志电路运行的状态,

2.3 IWDG键寄存器

  • 键寄存器本质上是控制寄存器,用于控制硬件电路的工作
  • 在可能存在干扰的情况下,一般通过在整个键寄存器写入特定值来代替控制寄存器写入一位的功能,以降低硬件电路受到干扰的概率
写入键寄存器的值 作用
0xCCCC 启用独立看门狗
0xAAAA IWDG_RLR中的值重新加载到计数器(喂狗)
0x5555 解除IWDG_PR和IWDG_RLR的写保护
0x5555之外的其他值 启用IWDG_PR和IWDG_RLR的写保护

2.4 IWDG超时时间

超时时间:TIWDG = TLSI × PR预分频系数 × (RL + 1)

其中:TLSI = 1 / FLSI

2.5 WWDG框图

  • 时钟来源是PCLK1,即APB1的时钟,默认是36MHz,时钟进来之后,先经过一个预分频器进行分频,分频之后的时钟驱动计数器进行计数,每来一个时钟,自减一次。该计数器之后T5~T0是有效的计数值,最高位T6用来当作溢出标志位,T6=1表示计数器没溢出,T6=0表示计数器溢出。
  • WDGA是窗口看门狗的激活位,也是使能,WDGA写入1,启用窗口看门狗,使能位作用于这个与门,与门的作用就类似于一个开关,左边是控制信号,右边是输入,上边是输出,控制信号为1,则输出等于输入,开关导通,控制信号给0,则输出等于0,与输入无关,开关断开。开关右边就是复位信号的来源,有两个来源,用或门连接,也就是这两个来源任意一个都可以复位,下面这一路来源于溢出标志位T6,当计数器溢出时T6等于0。然后输入进来,这里输入有个小圆圈,代表输入取反,所以0变为1,或门有效,输出1,当最后这个使能位给1,开启看门狗后,溢出信号就直接通向复位了。T6位一旦等于0,就表示计数器溢出,就产生复位信号。在程序正常运行状态下,必须始终保证T6位为1,这样才能避免复位。
  • 喂狗的最早界限由上面的看门狗配置寄存器设置。首先需要计算一个最早界限的计数值,写入W6~W0。这些值写入之后是固定不变的。一旦执行写入WWDG_CR操作时,与门开关就会打开。写入CR就是写入计数器,也就是喂狗。在喂狗时,比较器开始工作,一旦当前计数器T6:0>窗口值W6:0,比较结果就=1,这个1,通过或门也可以去申请复位。
  • 总结:喂狗太晚,6位计数器减到0了,复位;喂狗太早,计数器的值超过窗口值了,复位。

2.6 WWDG工作特性

  • 递减计数器T[6:0]的值小于0x40时,WWDG产生复位(0x3F)
  • 递减计数器T[6:0]在窗口W[6:0]外被重新装载时,WWDG产生复位----不能过早喂狗
  • 递减计数器T[6:0]等于0x40时可以产生早期唤醒中断(EWI),用于重装载计数器以避免WWDG复位----
  • 定期写入WWDG_CR寄存器(喂狗)以避免WWDG复位

2.7 WWDG超时时间

  • 超时时间:就是喂狗的最晚时间

    TWWDG = TPCLK1 × 4096 × WDGTB预分频系数 × (T[5:0] + 1)

  • 窗口时间:喂狗的最早时间

    TWIN = TPCLK1 × 4096 × WDGTB预分频系数 × (T[5:0] - W[5:0])

  • 其中:TPCLK1 = 1 / FPCLK1

2.8 IWDG和WWDG对比

WDG独立看门狗 WWDG窗口看门狗
复位 计数器减到0后 计数器T[5:0]减到0后、过早重装计数器
中断 早期唤醒中断
时钟源 LSI(40KHz) PCLK1(36MHz)
预分频系数 4、8、32、64、128、256 1、2、4、8
计数器 12位 6位(有效计数)
超时时间 0.1ms~26214.4ms 113us~58.25ms
喂狗方式 写入键寄存器,重装固定值RLR 直接写入计数器,写多少重装多少
防误操作 键寄存器和写保护
用途 独立工作,对时间精度要求较低 要求看门狗在精确计时窗口起作用

2.9 独立看门狗库函数

c 复制代码
// 写使能控制,0x5555
void IWDG_WriteAccessCmd(uint16_t IWDG_WriteAccess);
// 写预分频器
void IWDG_SetPrescaler(uint8_t IWDG_Prescaler);
// 写重装值
void IWDG_SetReload(uint16_t Reload);
// 重新装载寄存器,即喂狗,0xAAAA
void IWDG_ReloadCounter(void);
// 启动独立看门狗,0xCCCC
void IWDG_Enable(void);

FlagStatus IWDG_GetFlagStatus(uint16_t IWDG_FLAG);

// 查看标志位函数,来看复位是不是看门狗引起的
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG);
void RCC_ClearFlag(void);

2.10 窗口看门狗库函数

c 复制代码
// 恢复缺省配置
void WWDG_DeInit(void);

// 写入预分频器
void WWDG_SetPrescaler(uint32_t WWDG_Prescaler);
// 写入窗口值
void WWDG_SetWindowValue(uint8_t WindowValue);
// 使能中断
void WWDG_EnableIT(void);
// 写入计数器,即喂狗
void WWDG_SetCounter(uint8_t Counter);
// 使能窗口看门狗
void WWDG_Enable(uint8_t Counter);

FlagStatus WWDG_GetFlagStatus(void);
void WWDG_ClearFlag(void);
相关推荐
极客小张1 小时前
基于STM32的智能充电桩:集成RTOS、MQTT与SQLite的先进管理系统设计思路
stm32·单片机·嵌入式硬件·mqtt·sqlite·毕业设计·智能充电桩
m0_739312874 小时前
【STM32】项目实战——OV7725/OV2604摄像头颜色识别检测(开源)
stm32·单片机·嵌入式硬件
嵌入式小章4 小时前
基于STM32的实时时钟(RTC)教学
stm32·嵌入式硬件·实时音视频
TeYiToKu4 小时前
笔记整理—linux驱动开发部分(9)framebuffer驱动框架
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件·arm
基极向上的三极管5 小时前
【AD】3-4 在原理图中放置元件
嵌入式硬件
徐嵌5 小时前
STM32项目---水质水位检测
stm32·单片机·嵌入式硬件
徐嵌5 小时前
STM32项目---畜牧定位器
c语言·stm32·单片机·物联网·iot
lantiandianzi5 小时前
基于单片机的老人生活安全监测系统
单片机·嵌入式硬件·生活
东胜物联6 小时前
探寻5G工业网关市场,5G工业网关品牌解析
人工智能·嵌入式硬件·5g
stm32发烧友6 小时前
基于STM32的智能家居环境监测系统设计
stm32·嵌入式硬件·智能家居