Self-Instruct构造Prompt的例子

  1. 人工构造一批Prompt做种子。(Starting with a small seed set of human-written tasks)
  2. 每次把一些种子+后来生成的Prompt,放到Input里做few-shot examples,用LLM生成更多的Prompt;(Using the LLM to generate new instructions based on the seed tasks)
  3. 过滤掉质量太差的,修正能要的;(Filtering and refining the generated instructions)
  4. 把生成的所有Prompt,输入LLM得到输出结果;(Creating input-output instances for the new instructions)
  5. Input+Output,做LLM的训练样本(Using the generated dataset to fine-tune the LLM)

第2步,LLM生成:

复制代码
import random
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load a pre-trained language model
model_name = "bigcode/starcoderbase-1b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Seed tasks (simplified for demonstration)
seed_tasks = [
    "Write a function to calculate the factorial of a number.",
    "Create a class to represent a bank account.",
    "Implement a binary search algorithm."
]

def generate_instruction(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=50)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

def self_instruct(num_iterations):
    generated_tasks = []
    
    for _ in range(num_iterations):
        # Sample existing tasks
        sampled_tasks = random.sample(seed_tasks + generated_tasks, min(3, len(seed_tasks) + len(generated_tasks)))
        
        # Create a prompt for generating new instructions
        prompt = "Generate a new programming task based on these examples:\n\n"
        prompt += "\n".join(sampled_tasks)
        prompt += "\n\nNew task:"
        
        # Generate a new instruction
        new_task = generate_instruction(prompt)
        
        # In practice, you would filter and refine the generated task here
        
        generated_tasks.append(new_task)
    
    return generated_tasks

# Run Self-Instruct
new_tasks = self_instruct(5)
for i, task in enumerate(new_tasks, 1):
    print(f"Task {i}: {task}")

第3步过滤:

人工定义一些规则,过滤掉太差的;(也可以用LLM来做裁判)

目的:确保质量和多样性;

  • Filter out instructions that are too short or too long
  • Filter out instructions containing keywords unsuitable for language models (e.g. "image", "graph", "file", "plot")
  • Filter out instructions starting with punctuation
  • Filter out instructions starting with non-English characters
  • Filter out instructions that have high ROUGE-L similarity (above 0.7) with any existing instruction in the task pool
相关推荐
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn2 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
海盗儿3 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
不爱写代码的玉子3 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
小喵喵生气气4 小时前
Python60日基础学习打卡Day46
深度学习·机器学习
红衣小蛇妖6 小时前
神经网络-Day44
人工智能·深度学习·神经网络
且慢.5896 小时前
Python_day47
python·深度学习·计算机视觉
&永恒的星河&7 小时前
基于TarNet、CFRNet与DragonNet的深度因果推断模型全解析
深度学习·因果推断·cfrnet·tarnet·dragonnet
Blossom.1188 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask