LRU缓存算法设计

LRU 缓存算法的核⼼数据结构就是哈希链表双向链表哈希表 的结合体。这个数据结构⻓这样:

创建的需要有两个方法,一个是get方法,一个是put方法。

一些问题:为什么需要使用双向链表呢?因为删除链表的本身,需要得到他的前一个节点。如果使用单链表,效率就会很低,这边是使用的空间换取效率。

java 复制代码
//Node 节点类
public class Node {
    public  int key,val;
    public Node pre,next;
    public Node(int key,int val){
        this.key=key;
        this.val=val;
    }

}
java 复制代码
public class DoubleList {
    //头和尾
    public   Node head,tail;
    public int size;
    public DoubleList(){
        //两个哨兵
        head=new Node(0,0);
        tail=new Node(0,0);
        head.next=tail;
        tail.pre=head;
        size=0;
    }
    public  void addLast(Node x){
        //添加到末尾去
        //在tail之前插入一个 
        x.pre=tail.pre; //
        x.next=tail;
        tail.pre.next=x;
        tail.pre=x;
        size++;
    }
    public void remove(Node x) {
        //双链表删除一个节点  x.pre.next=x.next;
        x.pre.next = x.next;
        x.next.pre = x.pre;
        size--;
    }
    // 删除链表中第⼀个节点,并返回该节点,时间 O(1)
    public Node removeFirst() {
        if (head.next == tail)
            return null;
        Node first = head.next;
        remove(first);
        return first;
    }
    public int size() { return size; }
}

缓存设计的代码:

java 复制代码
import java.util.HashMap;

public class LRUCache {
    // key -> Node(key, val)
    private HashMap<Integer, Node> map;
    // Node(k1, v1) <-> Node(k2, v2)...
    private DoubleList cache;
    // 最⼤容量
    private int cap; //最大容量

    public LRUCache(int capacity) {
        this.cap = capacity;
        map = new HashMap<>();
        cache = new DoubleList();
    }

    private void makeRecently(int key) {
        Node x = map.get(key); //变为最近的    删除 然后添加进来
        // 先从链表中删除这个节点
        cache.remove(x);
        // 重新插到队尾
        cache.addLast(x);
    }
    private void addRecently(int key, int val) {
        Node x = new Node(key, val);
        // 链表尾部就是最近使⽤的元素
        cache.addLast(x);
        // 别忘了在 map 中添加 key 的映射
        map.put(key, x);
    }
    private void deleteKey(int key) {
        Node x = map.get(key);
        // 从链表中删除
        cache.remove(x);
        // 从 map 中删除
        map.remove(key);  //mp中也要删除
    }
    private void removeLeastRecently() {  //删除最久没有使用的
        // 链表头部的第⼀个元素就是最久未使⽤的
        Node deletedNode = cache.removeFirst();
        // 同时别忘了从 map 中删除它的 key
        int deletedKey = deletedNode.key;
        map.remove(deletedKey);
    }
    public int get(int key) {
        if (!map.containsKey(key)) {
            return -1;
        }
        // 将该数据提升为最近使⽤的
        makeRecently(key); //修改
        return map.get(key).val;
    }
    public void put(int key, int val) {
        //如果之前含有  删除 并添加
        if (map.containsKey(key)) {
            // 删除旧的数据
            deleteKey(key);
            // 新插⼊的数据为最近使⽤的数据
            addRecently(key, val);
            return;
        }
   //如果慢了 那么删除
        if (cap == cache.size()) {
            // 删除最久未使⽤的元素
            removeLeastRecently();
        }
        // 添加为最近使⽤的元素
        addRecently(key, val);
    }
}

一些算法的设计思路:,变为最近的。首先得到这个点,然后删除这个点。

添加到最近来 就需要new出来这个节点,然后加入到最后去。

删除 首先先得到,再从链表中删除掉。不要忘记hashmap中也是需要删除的。

如果满了,需要删除掉最早的那个节点。

test测试结果

通过测试发现 2已经被移除去了。

相关推荐
Q_19284999065 分钟前
基于Spring Boot的摄影器材租赁回收系统
java·spring boot·后端
Code_流苏7 分钟前
VSCode搭建Java开发环境 2024保姆级安装教程(Java环境搭建+VSCode安装+运行测试+背景图设置)
java·ide·vscode·搭建·java开发环境
努力学习编程的伍大侠10 分钟前
基础排序算法
数据结构·c++·算法
XiaoLeisj38 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
禁默1 小时前
深入浅出:AWT的基本组件及其应用
java·开发语言·界面编程
Cachel wood1 小时前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
Jasmine_llq1 小时前
《 火星人 》
算法·青少年编程·c#
Code哈哈笑1 小时前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
gb42152871 小时前
springboot中Jackson库和jsonpath库的区别和联系。
java·spring boot·后端