python爬虫之scrapy基于管道持久化存储操作

python爬虫之scrapy基于管道持久化存储操作

本文基于python爬虫之基于终端指令的持久化存储python爬虫之数据解析操作而写

scrapy持久化存储

基于管道:

编码流程:

1、数据解析

2、在item类中定义相关属性

3、将解析的数据封装存储到item类型的对象

4、在管道类的process_item中要将接受到的item对象中存储的数据进行持久化存储操作

5、在配置文件中开启管道

实际操作:

1、在items.py中定义item类

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class QiushiproItem(scrapy.Item):
    # define the fields for your item here like:
    title = scrapy.Field()
    content = scrapy.Field()
    # name = scrapy.Field()
    # pass

2、在qiushi.py中将数据封装到item类中

import scrapy
from qiushiPro.items import QiushiproItem


class QiushiSpider(scrapy.Spider):
    name = "qiushi"
    # allowed_domains = ["www.xxx.com"]
    start_urls = ["https://www.qiushile.com/duanzi/"]
    # def parse(self, response):
    #     #解析:段子标题+段子内容
    #     li_list = response.xpath('//*[@id="ct"]/div[1]/div[2]/ul')
    #     all_data = []
    #     for li in li_list:
    #         #xpath返回的是列表,但是列表元素一定是Selector类型的对象
    #         #extract可以将Selector对象中data参数存储的字符串提取出来
    #         # title = li.xpath('./li/div[2]/div[1]/a/text()')[0].extract()
    #         title = li.xpath('./li/div[2]/div[1]/a/text()').extract_first()
    #         #列表调用了extract之后,则表示将列表中每一个Selector对象中data对应的字符串提取了出来
    #         content = li.xpath('./li/div[2]/div[2]//text()')[0].extract()
    #
    #         dic = {
    #             'title':title,
    #             'content':content
    #         }
    #         all_data.append(dic)
    #         # print(title,content)

    def parse(self, response):
        #解析:段子标题+段子内容
        li_list = response.xpath('//*[@id="ct"]/div[1]/div[2]/ul')
        all_data = []
        for li in li_list:
            #xpath返回的是列表,但是列表元素一定是Selector类型的对象
            #extract可以将Selector对象中data参数存储的字符串提取出来
            # title = li.xpath('./li/div[2]/div[1]/a/text()')[0].extract()
            title = li.xpath('./li/div[2]/div[1]/a/text()').extract_first()
            #列表调用了extract之后,则表示将列表中每一个Selector对象中data对应的字符串提取了出来
            content = li.xpath('./li/div[2]/div[2]//text()')[0].extract()

            item = QiushiproItem()
            item['title'] = title
            item['content'] = content

            yield item#将item提交给了管道

3、在pipelines.py中的process_item类中进行持久化存储

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter


class QiushiproPipeline:
    fp = None
    #重写父类的一个方法:该方法只在开始爬虫的时候被调用一次
    def open_spider(self,spider):
        print('开始爬虫......')
        self.fp = open('./qiushi.txt','w',encoding='utf-8')

    #专门用来处理item类型对象
    #该方法可以接收爬虫文件提交过来的item对象
    #该方法每接收到一个item就会被调用一次
    def process_item(self, item, spider):
        title = item['title']
        content = item['content']

        self.fp.write(title+':'+content+'\n')

        return item
    def close_spider(self,spider):
        print('结束爬虫!')
        self.fp.close()

4、在settings.py配置文件中取消管道注释,开启管道

ITEM_PIPELINES = {
   "qiushiPro.pipelines.QiushiproPipeline": 300,
    #300表示的是优先级,数值越小优先级越高
}

运行:终端输入scrapy crawl qiushi可观察到qiushi.txt文件的生成

相关推荐
weixin_307779132 小时前
在AWS上使用KMS客户端密钥加密S3文件,同时支持PySpark读写和Snowflake导入
大数据·数据仓库·python·spark·云计算
eybk8 小时前
Qpython+Flask监控添加发送语音中文信息功能
后端·python·flask
weixin_307779139 小时前
Spark Streaming的背压机制的原理与实现代码及分析
大数据·python·spark
deephub9 小时前
十大主流联邦学习框架:技术特性、架构分析与对比研究
人工智能·python·深度学习·机器学习·联邦学习
西猫雷婶10 小时前
python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算
开发语言·python·opencv
背太阳的牧羊人11 小时前
分词器的词表大小以及如果分词器的词表比模型的词表大,那么模型的嵌入矩阵需要被调整以适应新的词表大小。
开发语言·人工智能·python·深度学习·矩阵
码界筑梦坊12 小时前
基于Django的豆瓣影视剧推荐系统的设计与实现
后端·python·django·毕业设计
fmdpenny12 小时前
前后分离Vue3+Django 之简单的登入
后端·python·django
yukai0800813 小时前
【最后203篇系列】005 -QTV200 Online
python
落杉丶15 小时前
[ASR]faster-whisper报错Could not locate cudnn_ops64_9.dll
python·whisper