python爬虫之scrapy基于管道持久化存储操作

python爬虫之scrapy基于管道持久化存储操作

本文基于python爬虫之基于终端指令的持久化存储python爬虫之数据解析操作而写

scrapy持久化存储

基于管道:

编码流程:

1、数据解析

2、在item类中定义相关属性

3、将解析的数据封装存储到item类型的对象

4、在管道类的process_item中要将接受到的item对象中存储的数据进行持久化存储操作

5、在配置文件中开启管道

实际操作:

1、在items.py中定义item类

复制代码
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class QiushiproItem(scrapy.Item):
    # define the fields for your item here like:
    title = scrapy.Field()
    content = scrapy.Field()
    # name = scrapy.Field()
    # pass

2、在qiushi.py中将数据封装到item类中

复制代码
import scrapy
from qiushiPro.items import QiushiproItem


class QiushiSpider(scrapy.Spider):
    name = "qiushi"
    # allowed_domains = ["www.xxx.com"]
    start_urls = ["https://www.qiushile.com/duanzi/"]
    # def parse(self, response):
    #     #解析:段子标题+段子内容
    #     li_list = response.xpath('//*[@id="ct"]/div[1]/div[2]/ul')
    #     all_data = []
    #     for li in li_list:
    #         #xpath返回的是列表,但是列表元素一定是Selector类型的对象
    #         #extract可以将Selector对象中data参数存储的字符串提取出来
    #         # title = li.xpath('./li/div[2]/div[1]/a/text()')[0].extract()
    #         title = li.xpath('./li/div[2]/div[1]/a/text()').extract_first()
    #         #列表调用了extract之后,则表示将列表中每一个Selector对象中data对应的字符串提取了出来
    #         content = li.xpath('./li/div[2]/div[2]//text()')[0].extract()
    #
    #         dic = {
    #             'title':title,
    #             'content':content
    #         }
    #         all_data.append(dic)
    #         # print(title,content)

    def parse(self, response):
        #解析:段子标题+段子内容
        li_list = response.xpath('//*[@id="ct"]/div[1]/div[2]/ul')
        all_data = []
        for li in li_list:
            #xpath返回的是列表,但是列表元素一定是Selector类型的对象
            #extract可以将Selector对象中data参数存储的字符串提取出来
            # title = li.xpath('./li/div[2]/div[1]/a/text()')[0].extract()
            title = li.xpath('./li/div[2]/div[1]/a/text()').extract_first()
            #列表调用了extract之后,则表示将列表中每一个Selector对象中data对应的字符串提取了出来
            content = li.xpath('./li/div[2]/div[2]//text()')[0].extract()

            item = QiushiproItem()
            item['title'] = title
            item['content'] = content

            yield item#将item提交给了管道

3、在pipelines.py中的process_item类中进行持久化存储

复制代码
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter


class QiushiproPipeline:
    fp = None
    #重写父类的一个方法:该方法只在开始爬虫的时候被调用一次
    def open_spider(self,spider):
        print('开始爬虫......')
        self.fp = open('./qiushi.txt','w',encoding='utf-8')

    #专门用来处理item类型对象
    #该方法可以接收爬虫文件提交过来的item对象
    #该方法每接收到一个item就会被调用一次
    def process_item(self, item, spider):
        title = item['title']
        content = item['content']

        self.fp.write(title+':'+content+'\n')

        return item
    def close_spider(self,spider):
        print('结束爬虫!')
        self.fp.close()

4、在settings.py配置文件中取消管道注释,开启管道

复制代码
ITEM_PIPELINES = {
   "qiushiPro.pipelines.QiushiproPipeline": 300,
    #300表示的是优先级,数值越小优先级越高
}

运行:终端输入scrapy crawl qiushi可观察到qiushi.txt文件的生成

相关推荐
蓝婷儿10 分钟前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
chao_78936 分钟前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表
大霞上仙1 小时前
nonlocal 与global关键字
开发语言·python
Mark_Aussie2 小时前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙2 小时前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
ZHOU_WUYI2 小时前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
且慢.5892 小时前
Python_day47
python·深度学习·计算机视觉
佩奇的技术笔记3 小时前
Python入门手册:异常处理
python
大写-凌祁3 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
爱喝喜茶爱吃烤冷面的小黑黑3 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式