动手学深度学习(Pytorch版)代码实践 -循环神经网络-53语言模型和数据集

53语言模型和数据集

1.自然语言统计

引入库和读取数据:

python 复制代码
import random
import torch
from d2l import torch as d2l
import liliPytorch as lp
import numpy as np
import matplotlib.pyplot as plt

tokens = lp.tokenize(lp.read_time_machine())

一元语法:

python 复制代码
# 一元语法
# 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起
corpus = [token for line in tokens for token in line]
vocab = lp.Vocab(corpus)
# print(vocab.token_freqs[:5])
# [('the', 2261), ('i', 1267), ('and', 1245), ('of', 1155), ('a', 816)]
freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
         xscale='log', yscale='log')
plt.show()

二元语法:

python 复制代码
# 二元语法
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])]
bigram_vocab = lp.Vocab(bigram_tokens)
# print(bigram_vocab.token_freqs[:5])
# [(('of', 'the'), 309), (('in', 'the'), 169), (('i', 'had'), 130),
# (('i', 'was'), 112), (('and', 'the'), 109)]
freqs = [freq for token, freq in bigram_vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
         xscale='log', yscale='log')
plt.show()

三元语法:

python 复制代码
# 三元语法
trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])]
trigram_vocab = lp.Vocab(trigram_tokens)
# print(trigram_vocab.token_freqs[:5])
# [(('the', 'time', 'traveller'), 59), (('the', 'time', 'machine'), 30), (('the', 'medical', 'man'), 24),
#  (('it', 'seemed', 'to'), 16), (('it', 'was', 'a'), 15)]
freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',
         xscale='log', yscale='log')
plt.show()


对比:

python 复制代码
# 一元语法、二元语法和三元语法对比
freqs = [freq for token, freq in vocab.token_freqs]
bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',
         ylabel='frequency: n(x)', xscale='log', yscale='log',
         legend=['unigram', 'bigram', 'trigram'])
plt.show()
2.读取长序列数据
python 复制代码
# n元语法,n 等于 num_steps
# 读取长序列数据
# 随机采样
def seq_data_iter_random(corpus, batch_size, num_steps):  #@save
    """使用随机抽样生成一个小批量子序列"""
    # 从随机偏移量开始对序列进行分区,随机范围包括num_steps-1
    # 从一个随机位置开始截取corpus,以生成一个新的子列表
    # random.randint(a, b) 会生成一个范围在 a 到 b 之间的整数,并且包括 a 和 b
    corpus = corpus[random.randint(0, num_steps - 1) : ]
    # 减去1,是因为我们需要考虑标签
    num_subseqs = (len(corpus) - 1) // num_steps
    # 长度为num_steps的子序列的起始索引
    initial_indices = list(range(0, num_subseqs * num_steps, num_steps))
    # 在随机抽样的迭代过程中,
    # 来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻
    random.shuffle(initial_indices)

    def data(pos):
        # 返回从pos位置开始的长度为num_steps的序列
        return corpus[pos: pos + num_steps]

    num_batches = num_subseqs // batch_size
    for i in range(0, batch_size * num_batches, batch_size):
        # 在这里,initial_indices包含子序列的随机起始索引
        initial_indices_per_batch = initial_indices[i: i + batch_size]
        X = [data(j) for j in initial_indices_per_batch]
        Y = [data(j + 1) for j in initial_indices_per_batch]
        yield np.array(X), np.array(Y)

my_seq = list(range(35))
# for X, Y in seq_data_iter_random(my_seq, batch_size=3, num_steps=5):
#     print('X: ', X, '\nY:', Y)
"""
X:  [[14 15 16 17 18]
 [19 20 21 22 23]
 [ 9 10 11 12 13]]
Y: [[15 16 17 18 19]
 [20 21 22 23 24]
 [10 11 12 13 14]]
X:  [[24 25 26 27 28]
 [29 30 31 32 33]
 [ 4  5  6  7  8]]
Y: [[25 26 27 28 29]
 [30 31 32 33 34]
 [ 5  6  7  8  9]]
"""

# 顺序分区
def seq_data_iter_sequential(corpus, batch_size, num_steps):  #@save
    """使用顺序分区生成一个小批量子序列"""
    # 从随机偏移量开始划分序列
    # random.randint(a, b) 会生成一个范围在 a 到 b 之间的整数,并且包括 a 和 b
    offset = random.randint(0, num_steps-1)
    # 根据偏移量和批量大小计算出可以使用的令牌数量,确保所有批次中的样本数量一致
    num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = np.array(corpus[offset: offset + num_tokens]) # 数组
    Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    # print(Xs)
    #  [[ 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18]
    #   [19 20 21 22 23 24 25 26 27 28 29 30 31 32 33]]
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_steps * num_batches, num_steps):
        X = Xs[:, i: i + num_steps]
        Y = Ys[:, i: i + num_steps]
        yield X, Y

# for X, Y in seq_data_iter_sequential(my_seq, batch_size=2, num_steps=5):
#     print('X: ', X, '\nY:', Y)
"""
X:  [[ 4  5  6  7  8]
 [19 20 21 22 23]]
Y: [[ 5  6  7  8  9]
 [20 21 22 23 24]]
X:  [[ 9 10 11 12 13]
 [24 25 26 27 28]]
Y: [[10 11 12 13 14]
 [25 26 27 28 29]]
X:  [[14 15 16 17 18]
 [29 30 31 32 33]]
Y: [[15 16 17 18 19]
 [30 31 32 33 34]]
"""

# 将上面的两个采样函数包装到一个类中, 以便稍后可以将其用作数据迭代器。
class SeqDataLoader:  #@save
    """加载序列数据的迭代器"""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = seq_data_iter_random
        else:
            self.data_iter_fn = seq_data_iter_sequential
        self.corpus, self.vocab = lp.load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
    

def load_data_time_machine(batch_size, num_steps,  #@save
                           use_random_iter=False, max_tokens=10000):
    """返回时光机器数据集的迭代器和词表"""
    data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab
相关推荐
好喜欢吃红柚子3 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
羊小猪~~3 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡4 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
哔哩哔哩技术5 小时前
B站S赛直播中的关键事件识别与应用
深度学习
deephub5 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
___Dream5 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码5 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
王哈哈^_^6 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
写代码的小阿帆6 小时前
pytorch实现深度神经网络DNN与卷积神经网络CNN
pytorch·cnn·dnn
是瑶瑶子啦7 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换